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 1 

CHAPTER 1 

INTRODUCTION 

In this study, newly developed methods to overcome curse of dimensionality and 

insufficient data problems in reliability-based design optimization (RBDO) are presented.  

To control the curse of dimensionality, a new variable screening method for RBDO is 

developed.  In the variable screening method, output (a performance measure) variance is 

selected as the measure to identify important variables for RBDO.  It is then found that 

partial output variance, which is calculated using a one-dimensional surrogate model, can 

approximate the output variance efficiently based on the univariate dimension reduction 

method (DRM).  Large partial output variance indicates that the corresponding variable 

significantly affects variance of output.  To choose important variables effectively, 

hypothesis testing is used to determine which variable has large partial output variance.  

Lastly, it is found that even quadratic interpolation is accurate enough for the one-

dimensional surrogate model in the developed variable screening method. 

To alleviate problems caused by lack of input data in RBDO, a confidence-based 

method for RBDO is developed.  In confidence-based RBDO (C-RBDO), the reliability 

output (probability of failure) follows a certain distribution.  To obtain the confidence 

level of the reliability output, the probability of the reliability output is broken down into 

the probability of input distribution parameters and the probability of input distribution 

types.  Then, each probability is obtained using the Bayesian method and the data.  The 

probability of the reliability output at a target reliability output is the confidence level of 

the target reliability output, and this is the probabilistic constraint of C-RBDO.  

Confidence-based RBDO is formulated to secure a target confidence level at the target 

reliability output at an optimum design, so that the optimum provides a conservative 

design even with limited data.  Moreover, the design sensitivity of the confidence level is 

derived for an efficient and effective optimization process. 
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 2 

In Section 1.1, the background and motivation of this study is presented.  Section 

1.2 provides the objective of the proposed research, and Section 1.3 describes the 

organization of this thesis. 

1.1  Background and Motivation 

1.1.1  Reliability-Based Design Optimization 

In the systems that engineers deal with, there are many sources of uncertainty.  

Material properties such as elastic modulus and Poisson’s ratio, ocean waves, wind 

velocity, ground surface, electric current, climate, sunlight, and even human and machine 

error show an uncertain nature.  Moreover, a group of these input uncertainties 

propagates through a performance measure to an output uncertainty.  Therefore, an 

engineer who designs such a system should take the output uncertainty into 

consideration.  If not, the designed system may not satisfy the required properties such as 

speed, fatigue life, strength, safety, noise, etc.  Hence, reliability analysis methods, which 

can identify output uncertainty, and reliability-based design optimization (RBDO), which 

can find an optimum design considering output uncertainty, have been developed and 

used recently for many engineering applications.  

Reliability analysis methods can be categorized into two groups: (1) sensitivity-

based methods and (2) sampling-based methods.  The sensitivity-based reliability 

analysis method requires the sensitivity (gradient) of performance measures to find the 

most probable point (MPP).  The first-order reliability method (FORM) (Haldar and 

Mahadevan, 2000; Hasofer and Lind, 1974; Tu et al., 1999; Tu et al., 2001), the second-

order reliability method (SORM) (Hohenbichler and Rackwitz, 1988; Breitung, 1984), 

and the dimension reduction method (DRM) (Rahman and Wei, 2006; Lee et al., 2010a) 

are representative sensitivity-based reliability analysis methods.  Sensitivity-based 

methods first approximate a performance measure in independent standard normal space 

(U-space) and find the closest point on the limit state function (performance measure 
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equals zero) from the origin in U-space.  Then the closest point is the MPP, and the 

distance between the MPP and the origin represents the probability of failure.  Then, 

FORM and SORM can approximate a performance measure at the MPP using first- and 

second-order Taylor series expansion, respectively, and DRM approximates a multi-

dimensional performance function with a sum of lower-dimensional functions to 

calculate the probability of failure. 

Reliability-based design optimization can be performed using sensitivity-based 

reliability analysis.  Sensitivity-based reliability analysis can be categorized into (1) the 

reliability index approach (RIA) and (2) the performance measure approach (PMA).  The 

RIA and PMA use different meanings of the MPP.  The MPP in the RIA is one in the 

above-mentioned sensitivity-based reliability analysis; it represents the probability of 

failure at the current design.  By contrast, the MPP in the PMA represents the target 

probability of failure (Tu et al., 1999).  The PMA shows a more stable and robust nature 

because it searches for the MPP in a smaller area than the RIA.  Both sensitivity-based 

RBDO methods require the additional information of the design sensitivity of a 

probabilistic constraint at the MPP.  The design sensitivity for the RIA has been 

developed for FORM-based RBDO (Haldar and Mahadevan, 2000; Tu et al., 1999; 

Ditlevsen and Madsen, 1996; Hou, 2004; Gumbert et al., 2003; Hohenbichler and 

Rackwitz, 1988) and for the DRM-based RBDO (Rahman and Wei, 2008).  The design 

sensitivity for the PMA has also been developed for FORM- and DRM-based RBDO 

(Gumbert et al., 2003; Hou, 2004; Lee et al., 2010b).  All the methods for the design 

sensitivity of probabilistic constraints require the sensitivity (gradient) of the 

corresponding performance measure.  However, the sensitivity of the performance 

measure is not always available, especially when the performance measure is 

complicated, highly nonlinear, and an implicit function. 

In spite of great advances in sensitivity-based methods, they are not suitable for 

highly nonlinear problems.  The MPP does not represent the correct (target) probability 
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of failure in highly nonlinear problems.  On the other hand, sampling-based reliability 

analysis and RBDO methods do not face such troubles because they calculate the 

probability of failure using Monte Carlo simulation (MCS).  Monte Carlo simulation is 

known to be independent of nonlinearity and dimensionality. For the sampling-based 

method, the design sensitivity of probabilistic constraints has been developed for RBDO 

(Lee et al., 2011a; Lee et al., 2011b).  Moreover, the sensitivity method does not require 

the sensitivity of a performance measure, so the sampling-based methods have more 

merit for complicated and nonlinear problems.  The crucial demerit of the sampling-

based method is its inefficiency.  Monte Carlo simulation may require thousands of 

analyses of a performance measure, and it is almost impossible to provide so many 

analyses for a complicated problem.  The surrogate model methods can alleviate the limit 

as they approximate performance measures with a small number of analyses.  However, 

creating the surrogate model itself becomes challenging for high-dimensional problems.  

This will be discussed in detail in Section 1.1.2. 

All of the aforementioned methods require an accurate input probabilistic model 

to assure the target reliability output (probability of failure) at the RBDO optimum 

design.  The inaccuracy of the input probabilistic model has a significant impact on the 

confidence of the RBDO design.  Due to cost and time, often insufficient data are 

provided for creation of an input probabilistic model in practical engineering problems.  

The limited data induces uncertainty in the input probabilistic model, and this uncertainty 

propagates to the reliability output.  Therefore, the optimum design obtained using the 

aforementioned RBDO methods may not be reliable due to the lack of data.  Hence, an 

appropriate conservativeness should be incorporated in the optimum design when only 

limited data are provided.  This will be discussed in Section 1.1.3. 
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1.1.2  Variable Screening Method for RBDO 

A design optimization problem is formulated using a set of design variables that 

describes the design system (Arora, 2004).  The number of independent design variables 

is called the dimensionality of the optimization problem.  To obtain an accurate optimum 

design, the system should be defined with correctly identified design variables.  For this 

reason, a certain number of design variables will be required in the optimization process.  

On the other hand, in RBDO, the number, dimensionality, becomes crucial because 

RBDO requires a large number of analyses for reliability analyses and the design 

sensitivities of probabilistic constraints compared to deterministic design optimization 

(DDO). 

As explained in Section 1.1.1, surrogate models have been used to reduce the 

number of analyses in RBDO.  For decades, several surrogate model methods have been 

developed, such as the radial basis function (RBF), polynomial response surface (PRS), 

support vector regression (SVR), Kriging, and dynamic Kriging methods (Cressie, 1991; 

Barton, 1994; Jin et al., 2001; Simpson et al., 2001; Queipo et al., 2005; Wang and Shan, 

2007; Forrester et al., 2008; Forrester and Keane, 2009; Zhao et al., 2011).  Still, the 

number of design variables is a critical factor even for the surrogate models because 

generating them is a challenging task for high-dimensional problems, due to the curse of 

dimensionality.  Therefore, variable screening is needed to create effective surrogate 

models of RBDO. 

Several variable screening methods have been studied in statistics.  An accurate 

Gaussian process model of computer simulation was generated using a reduced number 

of variables, which are found according to the maximum likelihood estimator (MLE) of 

the correlation parameters of the model for a deterministic problem (Welch et al., 1992).  

Based on the data, vital variables were efficiently identified in the pool of variables using 

a regression model (Duarte Silva, 2001; Wang, 2009).  Moreover, feature selection 

methods, which select important variables for effective representation of output, have 
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been researched (Guyon and Elisseeff, 2003).  Furthermore, manifold learning has been 

studied to capture input information in a reduced dimension to perform the following 

statistical analysis efficiently (Izenman, 2008).  In physics and engineering, variable 

screening methods have been researched as well.  Significant variables were identified 

for the quasi-molecular treatment of ion-atom collision (Eichler and Wille, 1975).  For a 

DDO problem of car crashworthiness, important variables were detected using the 

confidence intervals of the coefficients of a linear surrogate model (Craig et al., 2005).  

To assess the long-term performance of a geologic repository for high-level radioactive 

waste with small data and few variables, the sampling-based sensitivity measure ranked 

the importance of variables (Wu and Mohanty, 2006).  Apart from the aforementioned 

variable screening methods, the design sensitivity analysis (DSA) method can be used for 

the same purpose because key variables have larger design sensitivity.  For deterministic 

problems, the analytical DSA methods for the performance measures of various 

engineering problems are already well developed (Choi and Kim, 2005a; Choi and Kim, 

2005b), and these methods have been categorized as local sensitivity analysis (LSA; 

Reedijk, 2000; Chen et al., 2005).  For reliability problems, the randomness of the input 

variables is considered in probabilistic constraints.  Therefore, the design sensitivity of 

the probabilistic constraints mentioned in Section 1.1.1 could be used to find out 

important variables for reliability problems.  In addition, the correlation ratio (McKay et 

al., 1999), global sensitivity indices (Sobol, 2001), and analytical global sensitivity 

analysis (GSA) methods (Chen et al., 2005), which are categorized as GSA, can be 

effective variable screening methods as well (Mack et al., 2007). 

However, the above-mentioned methods might not be directly applicable to 

creating an accurate surrogate model for RBDO.  Methods totally based on existing data 

(Duarte Silva, 2001; Wang, 2009; Guyon and Elisseeff, 2003; Izenman, 2008) could not 

be applied to RBDO due to the change of the design in the optimization process.  Since 

RBDO utilizes computer simulations such as the finite element method (FEM) and 
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computational fluid dynamics (CFD), the relationship between input and output is known 

through the computer simulation.  Hence, it may not be useful for RBDO to identify input 

variables from among all the variables that may be irrelevant to output (Guyon and 

Elisseeff, 2003).  It is more of interest to find significant variables among relative 

variables using the computer simulation in this study.  In view of the fact that RBDO 

requires estimation of how much output uncertainty is induced by the randomness of 

input variables, capturing input information in reduced dimension (Izenman, 2008) is not 

a topic for RBDO.  By the same token, variable screening and DSA methods for 

deterministic problems (Welch et al., 1992; Craig et al., 2005; Choi and Kim, 2005a; 

Choi and Kim, 2005b) could not be used for RBDO.  For broad application, a method 

developed for a specific problem (Eichler and Wille, 1975) might not be adequate.  If a 

method requires a substantial number of analyses (McKay et al., 1999; Sobol, 2001), the 

analyses may not be affordable in computationally challenging RBDO problems.  Also, 

methods could become unstable due to an insufficient number of analyses (Wu and 

Mohanty, 2006).  As searching MPP in a high-dimensional problem could be expensive, 

so the design sensitivity of the sensitivity-based reliability method (Haldar and 

Mahadevan, 2000; Tu et al., 1999; Ditlevsen and Madsen, 1996; Hou, 2004; Gumbert et 

al., 2003; Hohenbichler and Rackwitz, 1988; Rahman and Wei, 2008; Lee et al., 2010b) 

does not offer an efficient variable screening method for RBDO.  If a method requires 

accurate full-dimensional surrogate models (Chen et al., 2005; Lee et al., 2011a; Lee et 

al., 2011b), the surrogate models can be directly used for RBDO without variable 

screening.  In summary, key desirable properties of a variable screening method for 

RBDO with a surrogate model are found from previous works: it should (1) be efficient, 

(2) consider input randomness, (3) not require a full-dimensional surrogate model, and 

(4) be applicable to broader problems. 
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1.1.3  Confidence-based RBDO 

An input probabilistic model in a reliability problem follows a joint probability 

distribution due to the randomness of input variables.  In addition, as briefly discussed in 

Section 1.1.1, the aforementioned RBDO methods require an accurate input probabilistic 

model – a so-called “true” input probabilistic model.  Theoretically, a true input 

probabilistic model is obtainable only from population data, which are the test results of 

all subjects in the system.  For example, the true model of the weight of elephants means 

literally the weights of “all” elephants on earth.  Therefore, it is practically impossible to 

obtain true input probabilistic models in realistic problems.  As a result, sampled data 

instead of population data are usually used to create an input probabilistic model.  Of 

course, how the data is sampled is important, but the amount of data still dictates the 

accuracy of the input probabilistic model.  Unfortunately, due to cost and time 

constraints, it is highly probable that only limited data are available for an input 

probabilistic model in a realistic problem.  Then, the input probabilistic model generated 

using the limited data becomes uncertain.  That is, the input probabilistic model shows a 

random feature on top of the randomness of the input variables.  As a result, the 

uncertainty in the input probabilistic model forces the reliability output to be less 

confident.   

Consequently, conservative, but not overly conservative, RBDO methods need to 

be investigated when only limited data are provided.  A safety factor approach could be 

an intuitive start to considering the uncertainty in the input probabilistic model 

(Elishakoff, 2004).  The P-boxes and the probability bounds, which are essentially a new 

input probabilistic model at a certain confidence level based on the data, are developed to 

capture the uncertainty in the input probabilistic model (Tucker and Ferson, 2003; 

Aughenbaugh and Paredis, 2006; Utkin and Destercke, 2009).  The uncertainty in the 

input probabilistic model and the randomness of the input variables are combined in a 

modified input probabilistic model by using intentionally enlarged input variances (Noh 
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et al., 2011a; Noh et al., 2011b).  Here, it can be seen that all these methods adjust the 

input probabilistic model to consider the uncertainty in it.  However, the uncertainty in 

the input probabilistic model transfers to the reliability output through a performance 

measure in a manner similar to how the randomness of the input variables propagates to 

the output uncertainty.  When the performance is nonlinear, it is hardly possible to 

accurately estimate the uncertainty of the reliability output, which is induced by the 

uncertainty in the input probabilistic model, by simply altering the input probabilistic 

model.  Moreover, modifying the input probabilistic model may mix the effect of the 

uncertainty in the input probabilistic model and the randomness of the input variables, 

which are essentially two different sources of uncertainty. 

The Bayesian approach may satisfy the need to directly access the reliability 

output and to separate the effect of the uncertainty in the input probabilistic model and 

the randomness of the input variables.  The fatigue reliability of a steel bridge was 

estimated by combining several input probabilistic models and two crack propagation 

models with the Bayesian method and nondestructive inspection (NDI) data (Zhang and 

Mahadevan, 2000), and the reliability could be updated as more NDI data became 

available.  The mean of the simulation output was qualified in the presence of the 

uncertainty in the input probabilistic model using the Bayesian model average (BMA) 

approach (Chick, 2001), but the two uncertainty sources were not clearly distinguished 

yet.  Later, Gunawan and Papalambros (2006) successfully separated the two sources and 

assumed that the reliability output follows beta distribution.  That is, the reliability 

output, which quantifies the randomness of the input variables, also follows another 

distribution (the beta distribution in this case) due to the uncertainty in the input 

probabilistic model.  The cumulative distribution function (CDF) of the beta distribution 

at certain reliability output is the confidence level of the reliability output.  Using these 

observations, an RBDO problem of minimizing cost and maximizing confidence level 

was performed.  Youn and Wang (2008) obtained an extreme case of the beta distribution 
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using extreme distribution theory, and the median value of the extreme case was used as 

probabilistic constraints for RBDO.  In addition, the design sensitivity of the probabilistic 

constraints was developed.  However, the distribution of the reliability output still has not 

been fully utilized.  Once the distribution is obtained, the confidence level of the 

reliability output is directly accessible.  Therefore, a method that can find an optimum 

satisfying target reliability output as well as target confidence level can be developed. 

Finally, from the previous works, the required properties of a new RBDO method 

for limited data can be found.  The new method should (1) directly access the reliability 

output using the Bayesian approach, (2) distinguish the uncertainty in the input 

probabilistic model and the randomness of input variables, and (3) use the two target 

values of target reliability output and target confidence level.  Ultimately, it would be 

better to (4) develop a design sensitivity for the new RBDO method to secure an effective 

and efficient optimization process. 

1.2  Objectives of the Proposed Study 

The first objective of this study is to develop a new variable screening method for 

RBDO with surrogate models.  As discussed in Section 1.1.2, the new method pursues (1) 

efficiency, (2) consideration of randomness of input variables, (3) a method without a 

full-dimensional surrogate model, and (4) broad application.  To reduce the 

dimensionality of a reliability problem, screened-out random variables should be fixed at 

a deterministic value.  However, even if only one random variable is fixed, the total 

randomness of the input variable and the corresponding output uncertainty will be 

reduced.  Hence, to correctly consider input randomness and solve a reliability problem 

with a reduced number of variables, the reduction of output uncertainty should be 

minimized.  This is why output variance, which represents the output uncertainty, is used 

in this research as a measure to identify important variables.  The variables that induce 

large output variance will be selected as important variables (Bae, 2012).  To improve 
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efficiency, the output variance is approximated with partial output variances, which is the 

output variance when a variable is random and others are fixed at their mean values, 

based on the univariate dimension reduction method (DRM; Rahman and Xu, 2004).  

Furthermore, the partial output variances require only one-dimensional surrogate models, 

which can be readily obtained with ease.  Because the partial output variances can be 

calculated for any performance measure, they are applicable to broad problems.  The 

variable screening method in this study emphasizes efficiency and practicality because 

those are very important for large-scale problems and the partial output variance satisfies 

the requirement. 

The second objective of this study is to develop a new RBDO method that is able 

to find a reliable design even with limited data.  As described in Section 1.1.3, the 

required properties for the new method are (1) direct access to the reliability output using 

the Bayesian approach, (2) separation of the uncertainty in the input probabilistic model 

and the randomness of input variables, (3) usage of two target values, and (4) design 

sensitivity.  Uncertainty in the input probabilistic model forces the reliability output to 

follow a certain probabilistic distribution.  Using Bayes’ theorem and the given input 

data, the distribution of reliability output is decomposed into successive conditional 

probabilities of input distribution parameters and input distribution types (Cho et al., 

2012).  The probability of input distribution parameters is derived using the Bayesian 

method with non-informative priors and assuming that the limited data are under a 

normality condition.  Furthermore, the probability of the input distribution type is 

acquired as well based on Bayes’ theorem for the given input distribution parameters and 

the data.  Then, the distribution of reliability output becomes directly accessible using 

MCS.  Finally, knowing that the probability of the reliability output is the confidence 

level at a reliability output, a new confidence-based RBDO can be formulated to find an 

optimum that minimizes a cost function and satisfies the target confidence level at the 

target reliability output.  As a result, a reliable, but not overly conservative, optimum 
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design can be obtained using C-RBDO even with limited data.  In addition, the analytical 

design sensitivity for the probabilistic constraint of C-RBDO, which is the confidence 

level at the target reliability output, has been developed as well.  The developed C-RBDO 

method has great importance because it can solve more realistic RBDO problems. 

1.3  Organization of Thesis 

Chapter 2 presents basic concepts of reliability analysis and RBDO, which could 

be helpful to understand the proposed methods. 

Chapter 3 proposes a new variable screening method for RBDO with surrogate 

models.  First, output variance is introduced as a benchmark to determine important 

variables.  Second, the developed method is explained in detail.  Third, the output 

variance is approximated with partial output variances.  Fourth, hypothesis testing is used 

to minimize error in the variable screening.  Finally, the one-dimensional (1-D) surrogate 

model is tailored for the developed method. 

Chapter 4 verifies the performance of the developed variable screening method 

for RBDO using analytical examples and a 44-dimensional (44-D) engineering problem.  

The developed method is compared with global sensitivity analysis (GSA) method.  

Reliability-based design optimization is performed to confirm the effectiveness of the 

developed method. 

Chapter 5 proposes a new method to estimate the confidence level of reliability 

output.  First, the probability of the reliability output is decomposed into successive 

conditional probabilities using the Bayesian method.  Second, the conditional 

probabilities are obtained with reasonable assumptions, and a numerical method is 

proposed to calculate the confidence level. 

Chapter 6 presents C-RBDO and its design sensitivity method.  First, C-RBDO is 

formulated using the developed confidence level estimation method.  Second, the design 

sensitivity of the confidence level is developed.  Third, efficiency improvement methods 
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are introduced to alleviate the computational cost of C-RBDO.  Finally, C-RBDO and the 

design sensitivity method are tested using numerical examples. 

Chapter 7 presents conclusions of this study and future recommendations. 
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CHAPTER 2 

DESIGN UNDER UNCERTAINTY 

In this chapter, fundamental ideas of design under uncertainty are reviewed.  In 

Section 2.1, the reliability analysis method, which estimates the probability of failure or 

the reliability output, is explained.  Then, the performance measure approach (PMA), 

which is an inverse reliability method, is presented in Section 2.2.  Sensitivity-based 

RBDO and its design sensitivity are discussed in Section 2.3.  Finally, recently developed 

sampling-based RBDO methods and stochastic design sensitivity are explained in Section 

2.4. 

2.1  Reliability Analysis 

Reliability analysis is a method that calculates the probability of failure.  The 

probability of failure pF can be defined using a multi-dimensional integral as (Madsen et 

al., 1986) 

 
( ) 0

[ ( ) 0] ( )F G
p P G f d

>
≡ > = ∫ XX

X x x  (2.1) 

where X = [X1, X2, …, XN]T is an N-dimensional vector of input random variables Xi, 

G(x) is a performance measure function such that G(x) > 0 is defined as failure, and fX(x) 

is a joint probability density function (PDF) of the input random variables.  In most 

engineering problems, the type of joint PDF is not Gaussian (multivariate normal 

distribution), and the performance measure G(x) is nonlinear.  In such problems, it is 

hardly possible to evaluate Eq. (2.1) analytically.  There are two approaches to resolve 

this problem.  In the first approach, the random variable vector X, which follows a non-

Gaussian PDF, is transformed into independent standard normal space (U-space) and the 

nonlinear performance measure is approximated with Taylor series expansion in the U-

space.  This first approach is called “sensitivity-based reliability analysis” since Taylor 
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series expansion uses the sensitivity (gradient) of the performance measure G(x).  The 

transformation and approximation are explained in Sections 2.1.1 and 2.1.2.  The second 

approach is to use the Monte Carlo simulation (MCS) method.  Monte Carlo simulation 

can calculate Eq. (2.1) using samples that are drawn from input joint PDF fX(x).  Hence, 

the second approach is called “sampling-based reliability analysis” and is explained in 

Section 2.1.3. 

2.1.1  Transformation 

Let an N-dimensional random variable vector X has a joint cumulative 

distribution function (CDF) FX(x).  Then, the Rosenblatt transformation, which is 

denoted as T : X →U, can transform X in X-space to a new random variable vector U in 

U-space as (Rosenblatt, 1952) 

 ( )

( )

( )

1

2

1
1 1

1
2 2 1

1
1 2 1
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

. (2.2) 

where the conditional CDF  and standard normal CDF Φ(●) are 

defined respectively as    
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, (2.3) 

 21 1( ) exp
22

u
u dξ ξ

π −∞

 Φ = − 
 ∫ . (2.4) 

In the transformed U-space, all random variables Ui follow standard normal distribution 

(normal distribution with zero mean and unit standard deviation), and they are 

statistically independent.  Therefore, the problem due to non-Gaussian distribution of X is 

( )1 2 1, , ,
iX i iF x x x x −
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resolved in the new random variable U.  Moreover, from Eq. (2.2), the inverse 

transformation can be obtained as    

 ( )
1

2

1
1 1

1
2 2 11

1
1 2 1

( )
:

( , , , )
N

X

X

N X N N

x F u

x F u x
T

x F u x x x

−

−
−

−
−

 = Φ  
 = Φ  

 = Φ  





. (2.5) 

If all Xi are statistically independent from each other, the joint PDF of X becomes simply 

a multiplication of all the marginal PDFs of Xi as 

 

1

( ) ( )
i

N

X i
i

f f x
=

= ∏X x  (2.6) 

where  is the marginal PDF of Xi.  Then, the conditional CDF in Eq. (2.3) 

becomes 

 ( )1 2 1, , , ( )
i iX i i X iF x x x x F x− =

. (2.7) 

Consequently, the Rosenblatt transformation and its inverse in Eqs. (2.2) and (2.5) are 

simplified for independent random variables Xi as 

 ( ) ( )1 1  and  
i ii X i i X iu F x x F u− − = Φ = Φ    . (2.8) 

For five commonly used distribution types, the Rosenblatt transformation and its inverse 

for independent random variables are shown in Table 2.1. 
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Table 2.1  The Rosenblatt Transformation and Its Inverse for Independent Random 
Variables 

Types Parameters PDF Transformations 

Normal µ : mean 
σ : standard deviation 

21
21( )

2

x

f x e
µ

σ

πσ

− −   = , 

( , )x ∈ −∞ ∞  

( )u x µ σ= − , 
x uµ σ= +  

Log-
normal 

( )22 ln 1σ σ µ = +  , 
2ln 0.5µ µ σ= −  

21 ln
21( )

2

x

f x e
x

µ
σ

πσ

− −   = , 

(0, )x ∈ ∞  

(ln )u x µ σ= − , 
( )expx uµ σ= +  

Weibull 
( )1 1v kµ = Γ + ,  

( )2 2 21 2v kσ µ= Γ + −  

( )
1

/( )
k

k
xk xf x e ν

ν ν

−
− =  

 
, 

[0, )x ∈ ∞  

1 ( / )1
kxu e ν− − = Φ −  , 

( ){ } 1/
ln 1

k
x v U = − − Φ   

Gumbel 
0.577µ ν α= + ,
6σ π α=  

( )( )( )
xx ef x e

α να να
− −− − −= , 

( , )x ∈ −∞ ∞  

{ }1 ( )exp xu e α ν− − − = Φ −  , 

{ }ln ln ( )x uν α= − − Φ    

 

 

2.1.2  First- and Second-Order Reliability Methods 

(FORM/SORM) 

To calculate the probability of failure in Eq. (2.1), first the performance measure 

G(x) is transformed to g(u) in U-space using the Rosenblatt transformation.  Then, the 

performance measure g(u) is approximated at the most probable point (MPP) in U-space 

using Taylor series expansion.  The MPP is the closest point on the limit state function, 

which means g(u) = 0, to the origin in U-space and is denoted as u*.  Hence, the MPP can 

be obtained by solving an optimization problem of  

 minimize     
subject to     ( ) 0.g =

u
u

 (2.9) 
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The concept of MPP is shown graphically in Figure 2.1.  It is noted that y(v) indicates 

g(u) in Figure 2.1.  Once MPP is found, the distance between MPP and the origin is the 

Hasofer-Lind reliability index βHL (Hasofer and Lind, 1974). 

 
 

 

Figure 2.1  Concepts of MPP, Reliability Index βHL, FORM and SORM 

Source:  Rahman, S., and Wei, D., "A Univariate Approximation at Most Probable 
Point for Higher-Order Reliability Analysis," International Journal of Solids and 
Structures, Vol. 43, No. 9, pp. 2820-2839, 2006. 
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The first-order reliability method (FORM) approximates the limit state function 

g(u) = 0 using first-order Taylor series expansion at the MPP.  Hence, the approximation 

requires the sensitivity (gradient) of the performance measure g(u), and the approximated 

limit state function is linear in U-space (see Figure 2.1).  Then the probability of failure in 

Eq. (2.1) can be estimated using FORM and the reliability index βHL as 

 FORM ( )F HLp β≅ Φ − . (2.10) 

For a highly nonlinear performance measure, FORM may not estimate the 

probability of failure correctly.  For example, FORM overestimates the probability of 

failure in Figure 2.1. The failure region (or failure set) defined by FORM is much larger 

than the actual one.  Hence, for more precise estimation, the second-order reliability 

method (SORM), which approximates the limit state function with second-order Taylor 

series expansion, can be used as (Breitung, 1984; Hohenbichler and Rackwitz, 1988) 

 1
2

SORM HL
HL 1 1

HL

( )( ) 2
( )F N Np φ ββ

β

−

− −≅ Φ − −
Φ −

I A  (2.11) 

where N is number of random variables (dimension of given problem), the matrix A and 

its partitions are defined as 

 
1 1T

1

1
2

N N

U N NN
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− 
= =  

∇   

A A
A R HR

A A

 

 

, (2.12) 

H is the Hessian matrix at the MPP in U-space, R is the rotation matrix such that u = Rv 

(see Figure 2.1), and the PDF of the standard normal distribution φ (●) is defined as 

 21 1( ) exp
22

x xφ
π

 = − 
 

. (2.13) 

Still, it can be seen in Figure 2.1 that SORM might not be able to calculate the probability 

of failure when the performance measure g(u) is highly nonlinear.  To alleviate the 
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problem caused by nonlinearity, the dimension reduction method (DRM) has been 

developed (Rahman and Xu, 2004; Xu and Rahman, 2004; Rahman and Wei, 2006; 

Rahman and Wei, 2008).  As shown in Figure 2.1, DRM is able to approximate the limit 

state more accurately than FORM and SORM; hence it provides an accurate reliability 

analysis result. 

2.1.3  Sampling-Based Reliability Analysis 

The probability of failure in Eq. (2.1) can be directly calculated by applying the 

MCS method as (Lee et al., 2011a; Lee et al., 2011b) 

 
( ) 0
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1

( ) ( ) ( )

1 [ ]
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i
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p f d I f d

I
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≅
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∑

X XX
x x x x x

x



 (2.14) 

where x(i) is the i-th realization of X (i-th MCS sample), NMCS is the number of MCS 

samples, ΩF is the failure domain such that G(x) > 0, and ( )
F

IΩ •  is an indicator function 

defined as 

 1, for
( )

0, otherwiseF

FIΩ

∈Ω
≡ 



x
x . (2.15) 

Sampling-based reliability analysis is very straightforward, as shown in Eq. 

(2.14), and it does not require finding the MPP.  Moreover, it does not involve sensitivity 

or the Hessian matrix of the performance measure, whereas they should be provided for 

FORM and SORM.  However, the accuracy of MCS depends on the number of MCS 

samples NMCS.  To calculate the probability of failure accurately, a large number of 

samples are required.  This is further discussed in Section 2.4. 
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2.2  Performance Measure Approach (PMA) 

The sensitivity-based reliability analysis in Section 2.1.2 is called the reliability 

index approach (RIA; Tu et al., 1999) because it finds the Hasofer-Lind reliability index 

βHL.  It is also shown that the probability of failure can be calculated with βHL using 

FORM and SORM.  On the other hand, the performance measure approach (PMA; Tu et 

al., 1999) does not estimate the probability of failure; it only judges whether a design 

satisfies a given target probability of failure Tar
Fp .  Using Eq. (2.10) in FORM, the target 

probability of failure is transformed to target reliability index β t as 

 1( )Tar
t Fpβ −= −Φ . (2.16) 

Then, an optimization problem can be formulated using the target reliability index β t as 

 maximize    ( )
subject to    .t

g
β=

u
u

 (2.17) 

Here, the optimum point of Eq. (2.17) is also called “MPP” and denoted by u*.  Let g(u) 

> 0 mean failure of the design.  If g(u*) is less than zero, the design satisfies the target 

probability of failure.  The PMA is well known for its efficiency and robustness (Tu et 

al., 1999; Tu et al., 2001; Choi et al., 2001; Youn et al., 2003).  Several techniques have 

been developed to find the MPP effectively in the PMA such as the mean value (MV) 

method, advanced mean value (AMV) method (Wu et al., 1990; Wu, 1994), hybrid mean 

value (HMV) method (Youn et al., 2003), and enhanced hybrid mean value (HMV+) 

method (Youn et al., 2005).  For the nonlinear performance measures, higher-order 

approximation is required for the PMA.  Hence, the DRM has been applied also to the 

PMA for the nonlinear performance measures (Lee et al., 2010a).   
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2.3  Sensitivity-Based RBDO  

A reliability-based design optimization (RBDO) problem can be formulated in 

general form as 

 minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, and
i

Tar
i F

L U NDV N

P G p i NC> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X



 

 (2.18) 

where X is the N-dimensional random variable vector, d is the NDV-dimensional design 

variable vector, Gi is the i-th constraint function, 
i

Tar
Fp  is the target probability of failure 

for the i-th constraint, and NC is the number of constraints.  In RBDO, a design variable 

di is the mean of the corresponding random variable Xj; hence di = µ(Xj).  Among 

random variables, not all of them are related to the design variables.  The variables that 

are not related to the design variables are called “random parameters.”  It is noted that the 

probabilistic constraint P[Gi(X) > 0] is used in Eq. (2.18), not the (deterministic) 

constraint function Gi. 

Sensitivity-based RBDO solves Eq. (2.18) subject to a modified probabilistic 

constraint using sensitivity-based reliability design optimization.  If RIA is used, the 

probabilistic constraint in Eq. (2.18) is changed to 

 [ ( ) 0]
i i

Tar
i F i tP G p β β> ≤ → ≤X , (2.19) 

where β i and 
it

β  are the probability index and target probability index for the i-th 

constraint, respectively.  βi is the same as βHL for the i-th constraints in the FORM.  For 

the SORM and DRM, β i can be calculated as 

 1( )
ii Fpβ −= −Φ , (2.20) 

where 
iFp  is the probability of failure for the i-th constraint using the SORM or DRM.  

For an effective and efficient RBDO optimization process, the design sensitivity of the 
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probabilistic constraint is necessary.  As mentioned in Chapter 1, the design sensitivity 

for RIA has been developed for the FORM (Haldar and Mahadevan, 2000; Tu et al., 

1999; Ditlevsen and Madsen, 1996; Hou, 2004; Gumbert et al., 2003; Hohenbichler and 

Rackwitz, 1988) and DRM (Rahman and Wei, 2008).   

In RBDO, the actual value of the probability of failure is of no interest since 

eventually all the probabilistic constraints will satisfy the target probability of failure at 

the optimum design.  Hence, the PMA, which judges only whether a design is safe or not, 

is more robust and adapts RBDO better than RIA.  When the PMA is used, the constraint 

is changed to 

 *[ ( ) 0] ( ) 0
i

Tar
i F iP G p G> ≤ → ≤X x , (2.21) 

where x* is the MPP of the PMA in X-space.  The design sensitivity for PMA is also 

developed for FORM and DRM (Gumbert et al., 2003; Hou, 2004; Lee et al., 2010b).  

For FORM, the expression of the design sensitivity is 

 

* * *

*( ) TG G G
= = =

∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ x x x x x x

x x
d d x x

. (2.22) 

2.4  Sampling-Based RBDO 

For complicated engineering problems, the sensitivity or Hessian matrix of the 

constraint function G(x) may not be available.  Then, the sampling-based reliability 

analysis in Section 2.1.3 becomes prominent since it does not require any of them.  Since 

the probability of failure is directly calculated using Eq. (2.14) in the sampling-based 

reliability analysis, no modification is needed for the probabilistic constraint in Eq. 

(2.18).  The design sensitivity of the probabilistic constraint is developed using the score 

function and the MCS method (Lee et al., 2011a; Lee et al., 2011b).  The design 

sensitivity method does not require extra MCS; it simultaneously calculates the design 
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sensitivity during estimation of the probability of failure using the same MCS samples 

and constraint function evaluations. 

First, the following four regularity conditions should be satisfied before derivation 

of the design sensitivity (Rubinstein and Shapiro, 1993; Rahman, 2009). 

1. The joint PDF ( ; )fX x μ  is continuous. 

2. The mean , 1, , ,i i i Nµ ∈Μ ⊂ =   where Mi is an open interval on . 

3. The partial derivative ( ; ) if µ∂ ∂X x μ  exists and is finite for all x and µi. In 

addition, pF(µ) is a differentiable function of µ. 

4. There exists a Lebesgue integrable dominating function r(x) such that 

 ( ; )( ) ( )
i

fh r
µ

∂
≤

∂
X x μx x  (2.23) 

for all µ.  h(x) is a general function and can be ( )
F

IΩ x . 

If the four conditions are satisfied, taking the derivative of Eq. (2.14) with respect to µi 

yields (Lee et al., 2011a; Lee et al., 2011b) 

 ( ) ( ) ( ; )

( ; )( )

ln ( ; )( ) ( ; )

ln ( ; )( )

N F

N F

N F

F

F

i i

i

i

i

p I f d

fI d

fI f d

fE I

µ µ

µ

µ

µ

Ω

Ω

Ω

Ω

∂ ∂
=

∂ ∂
∂

=
∂

∂
=

∂

 ∂
=  ∂ 

∫

∫

∫

X

X

X
X

X

μ x x μ x

x μx x

x μx x μ x

x μx







. (2.24) 

In Eq. (2.24), the derivative of the natural logarithm of the joint PDF fX(x; µ) with 

respect to µi is the first-order score function for µi , which is defined as 

 (1) ln ( ; )( ; )
i

i

fsµ µ
∂

≡
∂

X x μx μ . (2.25) 
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As explained before, the design sensitivity using the first-order score function for µi in 

Eq. (2.24) does not involve the sensitivity of the constraint function G(X).  It uses only 

the score function in Eq. (2.25), which can be obtained analytically.  The reason is well 

illustrated in Figure 2.2.  The horizontal axis is a random variable vector in a certain 

direction, and the vertical axis is the constraint function Gj(X).  Also, two examples of 

the input joint PDF fX(x; µ) are shown in Figure 2.2.  If the failure region is set as Gj(x) > 

0, the gray area in Figure 2.2 represents the probability of failure.  When the design 

variable µ changes in the optimization process, the constraint function Gj(X) holds its 

position, whereas the joint PDF fX(x; µ) moves along with the design variable.  Hence, 

the gray area expands or shrinks due to the PDF movement, and the change rate of the 

gray area depends on the shape (slope) of the PDF on the limit state, which is related to 

the score function.  This is why the design sensitivity is related to the score function, not 

the sensitivity of the constraint function Gj(X) in Eq. (2.24). 

 

 

 

Figure 2.2  Concept of Design Sensitivity for Sampling-Based RBDO 
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For an independent input random variable Xi, the first-order score function for µi 

in Eq. (2.25) can be expressed with the marginal PDF ( ; )
iX i if x µ  as 

 
(1) ln ( ; )ln ( ; )( ; ) i

i

X i i

i i

f xfsµ

µ
µ µ

∂∂
≡ =

∂ ∂
X x μx μ . (2.26) 

If the marginal PDF has an analytical expression as shown in Table 2.1, the derivation of 

the first-order score function for µi of the statistically independent random input is 

straightforward, as shown in Table 2.2. 

 

Table 2.2  First-Order Score Function for µi of Independent Random Variables 

Marginal 
dist. type 

First-order score function, (1) ( ; )
i

sµ x μ  

Normal 2
i i

i

x µ
σ
−  

Log-normal 2

ln1 1 (ln )i i i i i
i i i

i i i i i i

x xσ µ µ σσ µ
σ µ σ σ µ µ

   ∂ − ∂ ∂
− + × + −   ∂ ∂ ∂   

 

Gumbel ( )i i ix
i ie

α να α − −−  

Weibull ( 1)1 1 ln ln
ik

i i i i i i i i i i i

i i i i i i i i i i i i i

k k x k x k x k
k

ν ν ν
µ ν µ µ ν ν µ ν µ ν ν µ

   ∂ ∂ ∂ − ∂ ∂ ∂
− + − − −   ∂ ∂ ∂ ∂ ∂ ∂   

 

Source: Lee, I., Choi, K. K., Noh, Y., Zhao, L., and Gorsich, D., "Sampling-Based 
Stochastic Sensitivity Analysis using Score Functions for RBDO Problems 
with Correlated Random Variables," Journal of Mechanical Design, Vol. 133, 
No. 2, pp. 021003, 2011. 
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When two random variables Xi and Xj are statistically correlated, the joint PDF of 

X=[Xi, Xj]T can be expressed using marginal PDFs and copula as (Noh et al., 2009; Noh 

et al., 2010; Lee et al., 2011b) 

 2

,

( , ; )( ; ) ( ; ) ( ; )

( , ; ) ( ; ) ( ; )

i j

i j

X i i X j j

uv X i i X j j

C u vf f x f x
u v

C u v f x f x

θ µ µ

θ µ µ

∂
=

∂ ∂
=

X x μ
 (2.27) 

where C is a copula function, ( ; ) and ( ; )
i jX i i X j ju F x v F xµ µ= =

 
are marginal CDFs for 

iX  and jX , respectively, and θ is the correlation coefficient between Xi and Xj for the 

copula function.  Furthermore, the partial derivative of the copula function to u and v is the 

copula density function c as 

 2

,
( , ; )( , ; ) ( , ; )uv

C u vc u v C u v
u v

θθ θ∂
≡ =

∂ ∂
. (2.28) 

Using Eqs. (2.27) and (2.28), the first-order score function for µi of the correlated 

random bivariate variable X can be derived as 

 
(1) ln ( ; )ln ( ; ) ln ( , ; )( ; ) i

i

X i i

i i i

f xf c u vsµ

µθ
µ µ µ

∂∂ ∂
≡ = +

∂ ∂ ∂
X x μx μ . (2.29) 

The first term of the right-hand side of Eq. (2.29) for well-known copula types is listed in 

Table 2.3; the second term is already shown in Table 2.2.  In Table 2.3, it can be seen that 

another derivative term, which is the derivative of the marginal CDF u to design variable 

µi, is required, and the term is derived for the representative distribution types in Table 

2.4. 
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Table 2.3  Log-Derivative of Copula Density Function 

Copula 
type 

ln ( , ; )

i

c u v θ
µ

∂
∂

 

Clayton 
(1 )1 (2 1)

1 i

u u
u u v

θ

θ θ

θ θ
µ

− +

− −

 + + ∂
− + + − ∂ 

 

AMH 
( )

( )( ) ( ) ( )( )

2

2

1 ( 1) 3 (1 )
1 1 1 2 1 1 1 i

v v v u
u v u v uv u v
θ θ θ

θ θ θ µ
 − − + + − ∂

− + − − − − − − − − − ∂   

Frank 
( )(1 ) ( )

(1 ) (1 ) ( )

2
1

u u v

u v u v
i

e e u
e e e e

θ θ

θ θ θ θθ
µ

+ +

+ + +

 − ∂
 +

− − + ∂  
 

FGM ( )( )
2 (2 1)

1 1 2 1 2 i

v u
u v

θ
θ µ

 − ∂
 + − − ∂ 

 

Gaussian 
1 1 1

1 1 2

( ) ( ) ( )
( ( )) ( ( ))(1 ) i

u v u u
u u

θ
φ φ θ µ

− − −

− −

 Φ Φ − Φ ∂
+ Φ Φ − ∂ 

 

Source: Lee, I., Choi, K. K., Noh, Y., Zhao, L., and Gorsich, D., "Sampling-Based 
Stochastic Sensitivity Analysis using Score Functions for RBDO Problems 
with Correlated Random Variables," Journal of Mechanical Design, Vol. 
133, No. 2, pp. 021003, 2011. 
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Table 2.4  Partial Derivatives of Marginal CDF with Respect to µi 

Marginal  
distribution type 

Partial derivatives of marginal distribution,
 i

u
µ

∂
∂

 

Normal 
1 i

i i

x µφ
σ σ

 −
−  

 
 

Log-normal 2

ln1 (ln )i i i
i i

i i i i

xxµ σ µσ µ φ
σ µ µ σ

   ∂ ∂ −
− + −   ∂ ∂   

 

Gumbel 
( )( ) xi i

i ix e
ie

α να να
− −− − −−  

Weibull ln

ki
i

i

kx
i i i

i i i i i

k kx xe ν ν
ν µ ν ν µ

 
− 

 
   ∂ ∂

−   ∂ ∂   
 

Source: Lee, I., Choi, K. K., Noh, Y., Zhao, L., and Gorsich, D., "Sampling-Based 
Stochastic Sensitivity Analysis using Score Functions for RBDO Problems with 
Correlated Random Variables," Journal of Mechanical Design, Vol. 133, No. 2, pp. 
021003, 2011. 

 

 

Under the assumption that statistical correlation happens in between only two 

random variables, the joint PDF of a general random input X=[X1, …, XN]T, which has 

NCORR correlated pairs, can be expressed as 

 
1 1

( ; ) ( , ; ) ( ; )
i

NCORR N
j j X i ij i

f c u v f xθ µ
= =

= ∏ ∏X x μ  (2.30) 

Then, the first-order score function for µi of the general input X is derived as 

 

(1)

ln ( ; )
for independent 

ln ( ; )( ; )
ln ( ; )ln ( , ; )

for correlated 

i

i

i

X i i
i

i

X i ii j j
i

i i

f x
X

fs
f xc u v

X
µ

µ
µ

µµ θ
µ µ

∂
 ∂∂ ≡ =  ∂∂ ∂ + ∂ ∂

X x μx μ . (2.31) 
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It can be seen that the terms on the right side of Eq. (2.31) are the same as those in Eqs. 

(2.26) and (2.29).  Hence, the first-order score function can be obtained, and the design 

sensitivity in Eq. (2.24) becomes available for the general input random variable X.  

For an effective and efficient RBDO process, the probability of failure and its 

design sensitivity need to be calculated accurately with MCS.  The accuracy of the MCS 

depends on the number of MCS samples and the statistic under consideration.  For the 

reliability analysis and RBDO, the statistic is the target probability of failure.  Assuming 

that the error level of MCS is the same as the 95% confidence interval of the estimated 

probability of failure, the percentage error can be defined as (Haldar and Mahadevan, 

2000) 

 (1 )% 200%
Tar
F

Tar
F

p
NMCS p

ε −
= ×

×
 (2.32) 

where NMCS is the number of MCS samples and Tar
Fp  is the target probability of failure.  

In Eq. (2.32), it is shown that NMCS should be increased to maintain a certain level of 

accuracy for a small target probability of failure.  Since many analyses of the MCS 

samples are not affordable, surrogate models are commonly used for the sampling-based 

reliability analysis and RBDO as explained in Section 1.1. 

Though the sampling-based reliability analysis and RBDO have efficiency issues, 

they still have attractive features already mentioned in this section.  Hence, in the 

following chapters and sections, the sampling-based reliability analysis and RBDO are 

used as the main methods. 
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CHAPTER 3 

VARIABLE SCREENING METHOD FOR RBDO 

In this chapter, a new variable screening method for reliability-based design 

optimization (RBDO) is introduced.  In Section 3.1, variable screening for deterministic 

design optimization (DDO) and RBDO are compared, and output variability (output 

variance) is found to be a benchmark to determine key variables.  In Section 3.2, the 

developed method is explained in detail.  First, output variability is quantified with partial 

output variances, using only one-dimensional (1-D) surrogate models.  Then hypothesis 

testing is used to select key variables with minimum error.  Finally, the 1-D surrogate 

model is tailored especially for the developed method. 

3.1  Variable Screening 

Screening out variables means finding important variables among all random 

variables.  Here, the word “important” could have different meanings depending on the 

problem we are dealing with.  In the following two sections, the differences between 

variable screening for DDO and RBDO are explained.  Based on the difference, the 

required properties of variable screening for RBDO are introduced. 

3.1.1  Variable Screening for DDO 

A DDO problem can be formulated as 

 minimize      Cost( )
subject to     ( ) 0, 1, ,

,
i
L U NDV

G i NC≤ =

≤ ≤ ∈

d
d

d d d d




 (3.1) 

where d, Gi, NC, and NDV are the design variable vector, i-th constraint function, 

number of constraints, and number of design variables, respectively. 

In the DDO problem, the input design variables do not have uncertainty, and thus 

the design sensitivity can be used as a barometer to determine the importance ranking of 
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design variables with respect to the performance measure (constraint function).  The 

question is: “Where should the importance ranking of design variables be determined?” 

or “Where should the design sensitivity be calculated?” 

Local sensitivity analysis (LSA) calculates the design sensitivity at a given design 

point (Reedijk, 2000; Chen et al., 2005).  Usually, LSA is used to provide the direction of 

design movement in the optimization process.  For variable screening, LSA can provide 

the importance ranking of design variables at the current design point.  However, the 

importance ranking at the given design point could be different from the ranking at other 

design points if the performance measure is a nonlinear function of design variables.  On 

the other hand, global sensitivity analysis (GSA) is used to calculate overall design 

sensitivity on the entire design domain.  The GSA is like averaged design sensitivity in 

the design domain.  As it is an average, the importance ranking using GSA could mislead 

at specific points or even regions.  Hence, LSA and GSA have advantages and 

disadvantages for variable screening (Reedijk, 2000). 

3.1.2  Variable Screening for RBDO 

A general RBDO formulation in Eq. (2.18) is recalled as 

 minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, and
i

Tar
i F

L U NDV N

P G p i NC> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X



 

 (3.2) 

where X is an N-dimensional random variable vector, d is an NDV-dimensional design 

variable vector, Gi is the i-th constraint function, 
i

Tar
Fp  is the target probability of failure 

for the i-th constraint, and NC is the number of constraints. 

In the RBDO process, design variable vector d is the mean vector of the 

corresponding random variable X.  Though the design variable d is deterministic, the 

design sensitivity for RBDO should consider the randomness of X because the constraints 

are based on the probabilistic performance measure P[Gi(X)>0] as shown in Eq. (3.2).  
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Therefore, the design sensitivity of the performance measure alone cannot be used as a 

barometer.  The design sensitivity of the probabilistic performance measure is introduced 

in Sections 2.3 and 2.4, and can be used for variable screening for RBDO.  The design 

sensitivities by those methods are LSA because they provide different sensitivities at 

different designs.  The GSA method is also applicable for variable screening in RBDO 

problems as it is in DDO problems.  Again, both LSA and GSA methods have advantages 

and disadvantages. 

The random parameters will not increase the dimensionality of the optimization 

problem because they are not random design variables.  However, the surrogate model 

that includes random parameters is still required because they affect the output 

distribution.  The main objective of this study is to select important design variables so 

that accurate surrogate models can be generated and, at the same time, an appropriate 

optimum design (i.e., not suboptimum) can be obtained in the RBDO process.  Hence, 

once variable screening is done, the screened-out random design variables need to be 

fixed, not to be random parameters.  However, fixing a random variable as a 

deterministic variable will reduce the total output variability. 

Consider a simple example: 

 2~ (5,3 ),      1, 2, ... ,10iX i =  

( )( )10 2

1
~ 50, 3 10i

i
Y X

=

= ∑  . 
(3.3) 

If the probabilistic performance measure is P[Y > 60], then the reliability analysis result 

is 

 
[ ] 60 5060 1 0.1459

3 10
P Y − > = − Φ = 

 
 (3.4) 
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where Φ(●) is cumulative distribution function (CDF) of standard normal distribution.  

However, if one dimension is reduced by screening out X10 = µ10 = 5 while the other 

variables remain random, then the probabilistic performance measure changes to 

 9
2

1
5 ~ (50,9 )i

i
Y X

=

= +∑  . (3.5) 

It can be seen that output variability (variance of Y) is reduced from ( )2
3 10  to 92.  As a 

consequence, the reliability analysis result also changes as 

 60 5060 1 0.1333
9

P Y −  > = − Φ =    
 . (3.6) 

From Eqs. (3.4) and (3.6), 0.0126 (1.26%) of the reliability output is decreased by 

screening out one variable.  A more fundamental problem is that the lost amount 1.26% 

cannot be estimated without the full-dimensional reliability analysis result of Eq. (3.4).  

On the other hand, let’s assume that X10 has a smaller variance of one.  Then, the full-

dimensional reliability analysis yields 

 60 50( 60) 1 0.1347
82

P Y − > = − Φ = 
 

. (3.7) 

From Eqs. (3.6) and (3.7), the difference is 0.0014 (0.14%), which could be acceptable.  

Therefore, in this case, X10 could be fixed at the mean value.  As shown in the example, 

the output variability decreases if any random variable is fixed at a deterministic value.  

However, there are some variables that affect the output variability a small amount.  The 

variable screening method for effective surrogate models for RBDO is to find those 

variables that have small effects on the output variability.  It is noted that the random 

parameters are considered as much as the random design variables in this study.  Even 

though the random parameters are not changing during the RBDO process, they will 

influence the output variability.  Hence they should be considered in the variable 
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screening process, so that reliability of the performance measure can be accurately 

approximated using reduced dimension. 

3.2  Variable Screening with 1-D Surrogate Model 

The probability of failure cannot be solely determined by the output variability.  

To obtain accurate probability of failure, the output distribution is needed, that is, all 

statistical information of the output is required.  However, even though an input 

distribution is known, it is very difficult to obtain complete output distribution since the 

performance measure could be implicit, a nonlinear function, or even both.  For example, 

for a given normal input distribution, the output distribution could be bimodal as well as 

asymmetric.  Consequently, it is impractical to select a reduced number of input variables 

based solely on probability of failure.  As discussed in previous sections, a screened-out 

variable will be fixed at its mean value.  Then the change of output mean will be 

minimized.  As a result, the output variability becomes the measure that can determine a 

probability of failure.  Of course, other statistical moments or parameters, such as 

skewness and kurtosis, could affect probability of failure. However, either of these 

statistical parameters cannot be a measure by itself.  For example, a variable that induces 

larger (or smaller) output skewness may not be an important variable, but it could be an 

important variable when it induces larger (or smaller) output skewness and very similar 

output variability.  We could consider a combination of moments as a measure, but there 

are too many possible combinations to consider.  Hence, under the assumption that the 

output mean is similar, the output variability is chosen as the measure to select vital 

variables for RBDO in this study. 

The output variability can be quantified by the output variance as shown in 

Section 3.1.2.  The exact output variance of a nonlinear implicit performance measure is 

very difficult to obtain.  Hence, an approximated output variance is used in this study.  In 

the following sections, the output variance is decomposed into partial output variances, 
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which are the output variances when each input variable is random and the others are 

fixed at their mean values.  Then, a method to find the design variables that have a large 

impact on output variance is developed using a hypothesis testing. 

3.2.1  Approximated Output Variance 

A univariate dimension reduction method (DRM) is a well-known approximation 

method for statistical moments using multiple 1-D integrations (Rahman and Xu, 2004).  

Consider a performance measure Y and its realization y subject to N-dimensional input 

random vector X=[X1, …, XN]T: 

 1 1( ) ( , , ), ( ) ( , , )N NY Y X X y y x x= =X x  . (3.8) 

Define a function Yi, which is the performance measure when Xi is random and other 

variables are fixed at their mean values, as 

 1 1 1( , , , , , , )i i i i NY Y Xµ µ µ µ− +=   . (3.9) 

The realization of the performance measure at the input mean point µX is defined as 

 
0 ( )y y= Xμ . (3.10) 

The l-th statistical moment of Y, which is approximated using the univariate DRM, is 

defined as (Rahman and Xu, 2004) 

 
0( 1)

l

l i
i

m E Y N y
  ≅ − −  
   
∑ . (3.11) 

Then, the output variance 2
Yσ  can be approximated as 

 2 2 2
2 1 2

i i j i jY Y Y Y Y Y
i i j

m mσ σ ρ σ σ
>

≅ − = +∑ ∑  (3.12) 

where 2
iYσ  is the variance of Eq. (3.9), which is the partial output variance when only Xi 

is random, and 
i jY Yρ  is the correlation coefficient between Yi and Yj.  As shown in Eq. 
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(3.12), the partial output variances 2
iYσ  are the main variables for approximating the 

output variance 2
Yσ .  When 2

iYσ  is larger than other partial output variances, it takes the 

largest portion in the output variance 2
Yσ .  Therefore, if some Xi produces larger partial 

output variance than others, then Xi should be selected as an important variable.  It is 

noted that calculation of 2
iYσ  requires only 1-D integration, and thus only 1-D surrogate 

models are required to calculate the partial output variances. 

Statistical correlation between Xi and Xj yields the term of 
i j i jY Y Y Yρ σ σ  in Eq. 

(3.12) and affects the output variance.  When Xi and Xj are strongly correlated, one could 

be replaced by the other.  To calculate the term 
i j i jY Y Y Yρ σ σ , a two-dimensional surrogate 

model is required.  If there are only a few correlation pairs, calculating the correlation 

term could be affordable.  However, with a practical point of view, the partial output 

variance 2
iYσ  is focused in this study.  As we are looking for important variables, not the 

value of the output variance 2
Yσ , the partial output variance would be enough for variable 

screening.  In Figure 3.1, contours of independent, positively correlated (ρ = 0.8), and 

negatively correlated (ρ = −0.8) probability density functions are shown.  Correlation 

determines how the random variables are distributed inside the box (dotted line), whereas 

the size of the box is determined by variances of X1 and X2.  It can be seen that the 

primary effect on output variance is the box size, and then the distribution inside the box 

follows.  Consequently, to perform variable screening efficiently, the first thing we need 

to consider is the box size, not the distribution of random variables inside the box.  

Hence, the correlation term is not considered in this study for efficiency and practicality.  

It is noted that the statistical correlation between Xi and Xj will be considered in reduced-

dimensional RBDO if both variables are selected. 
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Figure 3.1  Effect of Variance and Correlation of Input Random Variables 

 

The partial output variance of 2
iYσ  is like LSA because it can have different values 

at different input mean points µX, which represents the current design point in the RBDO 

process.  Hence, the variable screening result could be changed as the design point 

changes.  There are several recommended points at which to perform variable screening 

using LSA.  The first one is the DDO optimum.  As the DDO optimum is usually close to 

the RBDO optimum, the variable screening result at the DDO optimum is likely to be 

similar to the result at the RBDO optimum.  Also, the design point where most of the 

deterministic constraints are active can be a good candidate point.  It is noted that DDO 

or the design point where the constraints are active could be obtained using the finite 

difference method (FDM) in a practical engineering problem.  Also, DDO could be 

achieved using the sensitivity obtained from a 1-D surrogate model because DDO 

requires only the deterministic LSA, which is 1-D. 
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3.2.2  Variable Screening Using Hypothesis Testing 

Using the 1-D surrogate model, the partial output variance 2
iYσ  can be calculated 

approximately as 

 { }22 ( )
1

1

1 ( , , , , )
1i

ns
j

Y i i N i
j

s y x y
ns

µ µ
=

= −
− ∑    (3.13) 

where ( )j
ix  is the j-th realization of the input random variable Xi, ns is the number of 

samples, and iy  is the mean of yi as 

 ( )
1

1

1 ( , , , , )
ns

j
i i i N

j
y y x

ns
µ µ

=

= ∑   . (3.14) 

As explained in previous sections, the partial output variance 2
iYs  can be used to determine 

important design variables.  To make the variable screening procedure systematic, 

hypothesis testing is applied in this study.  Hypothesis testing can prevent undesirable 

choices that could occur during the decision-making procedure.  Calculated partial output 

variance 2
iYs  depends on the number of samples ns.  When ns is large enough, the variable 

screening result will be accurate.  However, it would require a large computational time.  

Also, it is hard to determine when ns is large enough.  When ns is small, it will include 

statistical error.  If calculated 2
iYs  are distinctive from each other or with respect to the 

screening threshold value, then the effect of ns may not be significant.  However, ns 

could cause an error when some 2
iYs  are similar to each other or are near the screening 

threshold value.  Hypothesis testing can prevent this problem in a statistical manner by 

letting users control the error level.  

Various hypothesis testing methods have been developed for the decision-making 

problem (Rosner, 2006).  Among those methods, we need the one that is not sensitive to 

distribution type because the distribution type of Yi or 2
iYs  is not known in general.  The 

one-sample t-test is developed based on the central limit theorem (CLT), which states that 
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the sample mean of non-normal distribution follows normal distribution approximately 

for a large number of samples.  The one-sample t-test is not sensitive to underlying 

distribution types, so it is used in this study.  As the t-test is a method for sample mean, 
2
iYs  is calculated nr times for its statistical moments as 

 2( )

1

1
i

nr
k

i Y
k

v s
nr =

= ∑ , (3.15) 

 2 2( ) 2

1

1 ( )
1i i

nr
k

v Y i
k

s s v
nr =

= −
− ∑ , (3.16) 

where 2( )
i

k
Ys  is the k-th repetition of 2

iYs  and nr is the number of repetitions.  Now, the 

hypothesis is constructed: 

 
0 0 1 0: versus :i iH v H vµ µ≤ >  (3.17) 

where µ0 is the criterion of hypothesis testing.  According to Eq. (3.17), the design 

variable that corresponds to iv , which is greater than µ0 (H1 is true), will be selected as 

an important variable.  Using the one-sample t-test, the hypothesis can be tested by 

checking the following statement:  

 Reject H0 in favor of H1 if 1,1nrq t α− −≥  (3.18) 

where α is the significance level, 1,nrt − •  is 1
1( )nrt−

−  , and the test statistics q is defined as
   

 
( )0

i
i

s
q

nr
νν µ≡ − . (3.19) 

In Eqs. (3.15) and (3.16), the uncertainty induced by ns is transferred to nr.  

Hence, ns can be a fixed number, whereas nr should be decided appropriately.  Also, µ0 

needs to be identified in Eqs. (3.17) and (3.19).  µ0 is the key criterion that decides 

important variables, and it should be a value relative to iv  because the relative difference 

of partial output variances should be checked for variable screening.  At the same time, 
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µ0 needs to be statistically independent from iv  for reasonable hypothesis testing.  In this 

study, preliminary testing is proposed to obtain reasonable nr and µ0 as follows.  First, 

choose nr0, which is large enough so that the CLT holds.  Then, calculate the initial 

statistical moments of 2
iYs  as 

 0
(0) 2( )

10

1
i

nr
k

i Y
k

v s
nr =

= ∑ , (3.20) 

 0
2(0) 2( ) (0) 2

10

1 ( )
1i i

nr
k

v Y i
k

s s v
nr =

= −
− ∑ . (3.21) 

Using the value from Eq. (3.20), the testing criterion µ0 relative to iv  can be calculated 

as 

 (0)
0

1

N

i
iN

γµ ν
=

= ∑  (3.22) 

where γ is a constant that the user selects.  nr is calculated by limiting type II error (H0 is 

accepted when H1 is true) at the level of false negative rate β as (Rosner, 2006) 

 
0 0

2
1,1 1,1

0(0)
0

( )
max ,iv nr nr

i

s t t
nr nr

v
α β

µ
− − − − +

=   − 
 (3.23) 

In Eq. (3.23), 1,nrt − •  should be used instead of 
0 1,nrt − •  for accurate calculation of nr.  

However, Eq. (3.23) requires the value of nr on the right side to calculate nr.  To avoid 

this problem, 
0 1,nrt − •  is used instead, and 

0 1,nrt − •  produces a conservative result as it is 

larger than 1,nrt − • because nr is larger than nr0 in Eq. (3.23) and α is usually small.  

Finally, nr and µ0 are determined so that the proposed hypothesis testing can be utilized. 
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3.2.3  1-D Surrogate Model 

In previous sections, the 1-D surrogate model is treated as the given one because 

it is not difficult to generate.  However, efficiently creating a 1-D surrogate model could 

be an issue.  For efficiency, quadratic interpolation is proposed as a basic 1-D surrogate 

model in this study.  Quadratic interpolation may not be an adequate method for creating 

a surrogate model for a highly nonlinear performance measure.  However, a nonlinear 

performance measure can be effectively approximated by a quadratic function on a small 

region.  If X follows a normal distribution, 99.73% of X is in (µX −3σX, µX +3σX), which 

is much smaller than the infinite domain.  Even if X does not follow normal distribution, 

the interval (µX −3σX, µX +3σX) can cover almost all (approximately 98%) of X.  In view 

of the fact that this study is focused on calculation of partial output variance, the region 

(µX −3σX, µX +3σX) is large enough.  Hence, the 1-D surrogate model needs to be 

accurate in the region (µX −3σX, µX +3σX) so that quadratic interpolation could be the 

appropriate method to approximate the performance measure in the region.    

Quadratic interpolation requires three design of experiments (DoE) samples, and 

the location of DoE samples affects the accuracy of interpolation.  The location of DoE 

samples determined using the Chebyshev polynomial is known to give uniform error in 

the domain (Rao, 2002).  Because only the region (µX −3σX, µX +3σX) is of interest, the 

location of DoE samples is determined as x1 =µX −2.5981σX, x2 =µX and x3 =µX 

+2.5981σX using the Chebyshev polynomial.  Since a random variable X may not be 

evenly distributed in its domain, providing uniform error does not necessarily mean that 

the calculated partial output variance is accurate.  However, since no unique location of 

DoE samples is best for accurate partial output variance, the sample location by the 

Chebyshev polynomial is used in this study because it yields reasonable results for 

various distribution types of random variable X.  If the random variable X has a closed 

and bounded domain like [a, b], the domain can be directly used for calculation of partial 
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output variance, and the location of DoE samples are x1 = 0.93301a + 0.06699b, x2 = 

(a+b)/2 and x3 = 0.06699a + 0.93301b, using Chebyshev polynomials. 

To check the performance of a selected location of DoE samples, a nonlinear 

performance measure Y is used as 

 2( ) 0.3 sin(16 /15 0.7) sin (16 /15 0.7)Y X X X= + − + − . (3.24) 

Assuming that random variable X follows (0.5, 0.3332), three locations of DoE samples 

are chosen to compare the accuracy of the partial output variance.  The first location is 

{0.167, 0.5, 0.833}, which is µX and µX ±σX, and the second location is from the 

Chebyshev polynomial as {−0.365, 0.5, 1.365}.  The third location is wider, as {−0.667, 

0.5, 1.667}, which is µX and µX ±3.5σX.  Partial output variances are calculated using 

100,000 realizations of X, and true partial output variance is calculated by Eq. (3.24) with 

the same realizations.  To check the accuracy of the quadratic interpolation itself, mean 

square error (MSE) is calculated in the region of (−0.5, 1.5), which is (µX −3σX, µX +3σX) 

with 100 uniformly distributed points.  The calculated result is shown in Table 3.1, and 

the shape of quadratic interpolations is shown in Figure 3.2, where asterisk marks (*) 

represent the DoE sample points.  As shown in Table 3.1, the location of the DoE sample 

using Chebyshev polynomials produces more accurate partial output variance compared 

to the true one and less MSE than the other cases. 

This example cannot represent all performance measures.  When a highly 

nonlinear performance measure is expected, more sophisticated surrogate methods, such 

as the radial basis function (RBF), polynomial response surface (PRS), support vector 

regression (SVR), Kriging, and dynamic Kriging (Cressie, 1991; Barton, 1994; Jin et al., 

2001; Simpson et al., 2001; Queipo et al., 2005; Wang and Shan, 2007; Forrester et al., 

2008; Forrester and Keane, 2009; Zhao et al., 2011) methods, are better.  In any case, it is 

recommended to sample inside the interval of (µX −3σX, µX +3σX) for the random 

variable X if the distribution has an infinite domain. 
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Table 3.1  Quadratic Interpolation with Different Sample Locations 

Location of samples 
Quadratic interpolation 

True {0.167, 0.5, 
0.833} 

{−0.365, 
0.5, 1.365} 

{−0.667, 
0.5, 1.667} 

Partial 
output 

variance 

Value 8.74E-02 7.84E−02 6.92E−02 7.84E−02 

Accuracy 111.53% 100.01% 88.33% 100.00% 

MSE 1.17E−02 1.19E−03 9.00E−03 0 

 

 

 

 

(a) Location of sample: {0.167, 0.5, 0.833} 

Figure 3.2  Quadratic Interpolation of Y with Different Locations of Samples 
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(b) Location of sample: {−0.365, 0.5, 1.365} 

 

 

(c) Location of sample: {−0.667, 0.5, 1.667} 

Figure 3.2  Continued 
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CHAPTER 4 

NUMERICAL EXAMPLES OF THE 

VARIABLE SCREENING METHOD FOR RBDO 

In this chapter, the effectiveness of the developed variable screening method is 

verified using numerical examples.  In Section 4.1, user-specified parameters for the 

developed variable screening method are explained.  In Section 4.2, the performance of 

the present method is tested using two analytical examples.  In Section 4.3, the developed 

variable screening method is applied to a 44-D engineering problem, and the result is 

compared with the one from a global sensitivity analysis (GSA) method.  In addition, 

reliability-based design optimization (RBDO) is performed for various variable 

selections, the results are compared, and the effectiveness of the method is confirmed. 

4.1  User-Specified Parameters for Variable Screening 

For the numerical examples, partial output variances are calculated to select 

important variables using the 1-D quadratic interpolation presented in Section 3.2.3.  To 

use the variable screening method, five parameters: significance level α, false negative 

rate β, number of sample ns, initial number of repetition nr0, and control parameter γ  for 

threshold value, need to be decided by users.  Smaller α and β are better choices because 

they result in fewer statistical errors in the variable screening method.  However, when 

they are too small, very large nr could be required to maintain the error level specified by 

α and β  in Eq. (3.23).  Hence, 0.025 to 0.05 would be a reasonable choice for them.  For 

nr0 and ns, a small number could be chosen to reduce computational cost.  However, a 

small value of nr0 and ns will rapidly increase nr to maintain the error levels.  Hence, an 

appropriately large number should be used; they are set to 50 or 100 in the numerical 

examples.  The parameter γ  in Eq. (3.22) is for user control of the threshold value that 

determines important variables.  In the numerical examples, γ  is initially set to 1.0, and 

the variable screening procedure is performed.  Then, the ratio of the sum of partial 
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output variances of selected variables to that of all random variables, which is an 

estimation of the captured output variance, is checked.  If the ratio is less than 85%, γ  is 

lowered to achieve 85%.  As explained before, the partial output variance is an 

approximation method, which is why the ratio of 85% may not mean that 85% of total 

output variance is actually captured in the selected variables.  However, it would be a 

good estimation with affordable cost because it does not require many design of 

experiments (DoE) samples or full-dimensional surrogate models. 

4.2  Analytical Examples 

Hartmann 6-D and Dixon-Price 12-D are well-known analytical functions.  They 

are high-dimensional as well as nonlinear, so they are tested for the variable screening 

method.  Constant terms are added to the original functions to make both functions active 

(i.e., G(x) = 0) at the mean point of the input random variables.  Note that adding a 

constant term does not change the character of the functions.  Input random variables 

have a variety of marginal distribution types and copula types, so the analytical examples 

can reveal the effects of different distribution types and correlations. 

The functions are tested with three different methods.  The first is the developed 

variable screening method.  As mentioned before, parameters of α = β = 0.025, nr0 = ns 

= 100 and γ = 1.0, and 1-D surrogate model with quadratic interpolation are used.  γ  is 

initially set to 1.0 and lowered when necessary.  The second is screening with accurate 

partial output variances using the analytical functions directly and 1,000,000 realizations 

of random variables.  The calculated partial output variances are used for reference.  

When a performance measure is a linear function (G = ΣαiXi) of the input random 

variables Xi’s, the output variance is 2 2
ii Xα σΣ , where 2

iXσ  is a variance of Xi.  Hence, the 

partial output variance can be linearly approximated as 2 2
ii Xα σ  with a design sensitivity 

(gradient) αi and input variance 2
iXσ .  Furthermore, an important variable might be 
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selected based on the partial output variances calculated with the sensitivity-variance 

method, and it is applied to the analytic functions for comparison. 

4.2.1  Hartmann 6-D 

The first analytical example is the Hartmann 6-D, and a constant term is added as 

explained earlier.  The analytical expression is shown as (Dixon and Szegö, 1978) 

 
2

1 1
( ) exp ( ) 3.3082

q m

i ij j ij
i j

G a b X d
= =

 
= − − − + 

 
∑ ∑X  (4.1) 

where 0 ≤ Xi ≤ 1, m = 6, q = 4 and 

 [ ]1.0 1.2 3.0 3.2=a , (4.2) 

 10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

 
 
 =
 
 
 

b , (4.3) 

 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 
 
 =
 
 
 

d . (4.4) 

Information about input random variables is listed in Table 4.1.  Input random variables 

have four different marginal distribution types: normal, lognormal, gamma, and Weibull.  

X5 and X6 are correlated with the Clayton copula and Kendall’s tau of 0.5.  
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Table 4.1  Input Random Variables for Hartmann 6-D Example 

 

 

The result of variable screening is shown in Table 4.2.  The design sensitivity 

(gradient) of the Hartmann 6-D in Eq. (4.1) at the input mean point is shown in the 

second column, and the third through fifth columns show partial output variances using 

the sensitivity-variance method, the variable screening method, and the accurate method, 

respectively.  As the variable screening method calculates partial output variances nr 

times, the result is the mean value of the calculated partial output variances.  In each 

method, important variables are marked with bold font.  It can be seen that the variable 

screening method finds the same variables as the accurate method, whereas the 

sensitivity-variance method misses X4 and X5.  The sixth and seventh columns are the 

ratios of partial output variances using the sensitivity-variance method and the variable 

screening method to the accurate partial output variances, respectively.  It is evident that 

the sensitivity-variance method cannot estimate the partial output variances accurately, 

while the variable screening method does.  Overall, the variable-screening method 

outperforms the sensitivity-variance method.  Hence, it is better to use at least quadratic 

approximation for the 1-D surrogate model to calculate partial output variances. 

Random 
variable 

Distribution 
type 

Mean STDEV 
Correlation 
(Copula) 

X1 Normal 0.20 0.009 - 

X2 Lognormal 0.15 0.007 - 

X3 Gamma 0.48 0.015 - 

X4 Weibull 0.28 0.014 - 

X5 Normal 0.31 0.014 Clayton 

X6 Weibull 0.68 0.013 τ = 0.5 
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Table 4.2  Partial Output Variances of Hartmann 6-D Example 

Random 
variable 

Design 
sensitivity 

Sensitivity 
-variance 

Variable 
screening Accurate Sens.-Var. 

/Accurate 
Var. Scr. 
/Accurate 

X1 −5.88E−02 2.80E−07 2.24E−06 2.25E−06 12.4% 99.6% 

X2 −1.36E−02 9.04E−09 6.12E−07 6.17E−07 1.5% 99.2% 

X3 7.15E−02 1.15E−06 1.11E−05 1.07E−05 10.7% 103.7% 

X4 2.63E−01 1.35E−05 8.88E−05 8.67E−05 15.6% 102.4% 

X5 −1.36E−01 3.61E−06 1.86E−04 1.86E−04 1.9% 100.0% 

X6 1.17E+00 2.29E−04 1.65E−04 1.66E−04 138.0% 99.4% 

Selected 2.29E−04 4.40E−04 4.39E−04 - - 

All 2.48E−04 4.54E−04 4.52E−04 - - 

Selected / All 92.3% 96.9% 97.1% - - 

Criterion (µ0) 4.13E−05 7.42E−05 7.54E−05 - - 

 

 

In Table 4.2, the bottom four rows show more information about each method.  

The first and second rows are the sums of partial output variances of selected variables 

and all variables, respectively.  The third row shows the ratio of the first row to the 

second row.  The last row is µ0, which is the criterion used to select important variables.  

In the variable screening method, the important variables (X4, X5 and X6) are determined 

to be larger than µ0 by hypothesis testing.  The sensitivity-variance method and the 

accurate method select important variables if the variable has partial output variance 

larger than µ0.  In the third row, the ratio for the variable screening method is larger than 

85%, so γ  is the initial value of 1.0, and equivalent µ0 is applied for other methods.  The 

sensitivity-variance method estimates that 92.3% of output variance is contained in X6 

only.  This is a very poor estimation, as only 36.7% (=1.66E−04/4.52E−04) of output 

variance is captured in X6 according to the result of the accurate method.  On the other 

 

 



www.manaraa.com

 51 

hand, the variable screening method estimates that 96.9% of output variance is contained 

in X4, X5, and X6, and this is very accurate compared to the 97.1% determined by the 

accurate method. 

However, the total and captured output variances in Table 4.2 are approximations 

using the partial output variances, and the correlation term is not considered, as explained 

in Section 3.2.1.  Having the analytical expression of the Hartmann 6-D example in Eq. 

(4.1), true total output variance induced by multiple input random variables can be 

calculated as well.  The true total output variance is calculated using 1,000,000 

realizations of all input random variables, and the calculated value is 4.23E−04, as shown 

in Table 4.3.  Recalling the approximated result in Table 4.2, the variable screening 

method (4.54E−04) and the accurate method (4.52E−04) well approximate the true total 

output variance, whereas the sensitivity-variance method (2.48E−04) is not able to do so.  

In Table 4.3, true captured output variance by the selected variables is also calculated.  

To calculate the true captured output variance, the realizations, which are generated to 

calculate the true total output variances, are used.  Among them, the realizations of the 

screened-out variables are fixed at their mean values.  Then, the variance of the Hartmann 

6-D is calculated using the modified realizations.  The true captured output variance in X6 

is 1.66E−04, which is the same as the partial output variance of X6 found by the accurate 

method (see Table 4.2).  Hence, the sensitivity-variance method captures only 39.2% 

(1.66E−04/4.23E−04) of the true total output variance in its selection X6.  This will lead a 

reliability problem to estimate the probability of failure incorrectly.  By contrast, the 

captured output variance in X4, X5, and X6 is 4.10E−04, which is 96.9% 

(4.10E−04/4.23E−04) of the total output variance.  This indicates that a reliability 

problem could be solved accurately utilizing X4, X5, and X6.  From this example, it can 

be seen that the variable screening method works as it is intended. 
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Table 4.3  True Total and Captured Output Variances of Hartmann 6-D Example 

 Sensitivity 
-variance 

Variable screening 
& accurate 

True total 
output variance 

Selected variables X6 (1-D) X4, X5, X6 (3-D) All (6-D) 

Captured output 
variance 1.66E−04 4.10E−04 4.23E−04 

Ratio to total out. var. 39.2% 96.9% 100.0% 

 

 

4.2.2  Dixon-Price 12-D 

The second analytical example is the Dixon-Price 12-D, and again a constant term 

is added to its original function.  The analytical expression is shown as (Lee, 2007) 

 2 2 2 3
1 1

2
( ) ( 1) (2 ) 3.5575 10

m

i i
i

G X i X X −
−

=

= − + − − ×∑X  (4.5) 

where −10 ≤ xi ≤ 10, i = 1, 2, …, m and m = 12.  Input random variables shown in Table 

4.4 are used for the test.  They have five different marginal distribution types of normal, 

lognormal, Weibull, Gumbel, and gamma.  X1 and X2 are correlated with the Frank 

copula and Kendall’s tau of 0.7.  Also, X5 and X6 are correlated with the FGM copula and 

Kendall’s tau of 0.2. 

The test result of the Dixon-Price 12-D example is shown in Table 4.5, and 

selected variables in each method are marked with bold font.  In this example, the value 

of γ  is lowered to 0.7 to contain at least 85% of output variance in the selected variables.  

And it is shown that 86.6% of output variance is estimated using the variable screening 

method in Table 4.5.  Design sensitivities with respect to X9 ~ X12 are zero, and 

accordingly the partial output variances of X9 ~ X12 using the sensitivity-variance method 

are zero.  Hence, the sensitivity-variance method misses X9 and X12 even though they 
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have large partial output variances.  Moreover, the other partial output variances using 

the sensitivity-variance method have poor accuracy compared to the accurate method (see 

the sixth column in Table 4.5).  Hence, X2 and X3 are selected instead of X6 even though 

X6 actually has larger partial output variance than X2 and X3.  On the contrary, the 

variable screening method reasonably estimates partial output variances and correctly 

identifies important variables compared to the accurate method.  Therefore, it is 

confirmed that at least quadratic approximation is needed for the 1-D surrogate model to 

calculate partial output variances. 

 

Table 4.4  Input Random Variables for Dixon-Price 12-D Example 

Random 
variable 

Distribution 
type 

Mean STDEV 
Correlation 
(Copula) 

X1 Normal 1.00 0.025 Frank 

X2 Normal 0.71 0.02 τ = 0.7 

X3 Lognormal 0.59 0.02 - 

X4 Lognormal 0.55 0.02 - 

X5 Weibull 0.52 0.02 FGM 

X6 Weibull 0.51 0.02 τ = 0.2 

X7 Gumbel 0.51 0.015 - 

X8 Gumbel 0.50 0.015 - 

X9 Normal 0.50 0.015 - 

X10 Normal 0.50 0.01 - 

X11 Gamma 0.50 0.01 - 

X12 Gamma 0.50 0.015 - 
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Table 4.5  Partial Output Variances of Dixon-Price 12-D Example 

Random 
variable 

Design 
sensitivity 

Sensitivity 
-variance 

Variable 
screening Accurate Sens.-Var. 

/Accurate 
Var. Scr. 
/Accurate 

X1 −3.28E−02 6.72E−07 7.95E−06 7.71E−06 8.7% 103.1% 

X2 1.76E−01 1.24E−05 1.41E−04 1.35E−04 9.2% 104.4% 

X3 −3.15E−01 3.98E−05 1.56E−04 1.62E−04 24.6% 96.3% 

X4 3.56E−01 5.07E−05 2.95E−04 2.81E−04 18.0% 105.0% 

X5 −1.94E−01 1.50E−05 4.98E−04 4.45E−04 3.4% 111.9% 

X6 −1.38E−01 7.61E−06 6.22E−04 5.51E−04 1.4% 112.9% 

X7 4.51E−01 4.58E−05 5.27E−04 5.57E−04 8.2% 94.6% 

X8 −3.20E−01 2.30E−05 3.10E−04 3.55E−04 6.5% 87.3% 

X9 0.00E+00 0.00E+00 2.20E−04 2.15E−04 0.0% 102.3% 

X10 0.00E+00 0.00E+00 5.31E−05 5.25E−05 0.0% 101.1% 

X11 0.00E+00 0.00E+00 6.42E−05 6.32E−05 0.0% 101.6% 

X12 0.00E+00 0.00E+00 2.45E−04 2.39E−04 0.0% 102.5% 

Selected 1.87E−04 2.72E−03 2.64E−03 - - 

All 1.95E−04 3.14E−03 3.06E−03 - - 

Selected / All 95.9% 86.6% 86.3% - - 

Criterion (µ0) 1.14E−05 1.68E−04 1.79E−04 - - 

 

 

Using Eq. (4.5), the true total and captured output variances of Dixon-Price 12-D 

example are calculated as shown in Table 4.6.  In Table 4.5, the variable screening 

(3.14E−03) and the accurate methods (3.06E−03) reasonably approximate the true total 

output variance (3.30E−03 in Table 4.6), while the sensitivity-variance method 

(1.95E−04) cannot.  In Table 4.6, the true captured output variance by selected variables 

using the sensitivity-variance method is only 2.15E−03, which is 65.2% of the true total 

output variance.  By contrast, the output variance of 2.80E−03 is contained in X4 ~ X9 
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and X12, which indicates that 84.8% of the true total output variance is captured.  Hence, 

it is verified that the variable screening method correctly finds the important variables of 

the Dixon-Price 12-D example.  Through analytical examples, it is shown that the partial 

output variance is a well-performing measure for variable screening purposes, and the 

proposed variable screening method successfully finds important variables as it is 

intended. 

 

Table 4.6  True Total and Captured Output Variances of Dixon-Price 12-D Example 

 Sensitivity 
-variance 

Variable 
screening & 

accurate 

True total output 
variance 

Selected variables X2 ~ X5, X7, X8 
(6-D) 

X4 ~ X9, X12  
(7-D) All (12-D) 

Captured output 
variance 2.15E−03 2.80E−03 3.30E−03 

Ratio to total out. var. 65.2% 84.8% 100.0% 

 

 

4.3  Engineering Example 

A car noise, vibration, and harshness (NVH) and crash safety problem is 

considered to demonstrate the performance and efficiency of the proposed method.  The 

problem includes full frontal impact, 40% offset frontal impact, and NVH as constraints.  

There are a total of 11 performance measures as shown in Table 4.7: nine safety measures 

and two NVH measures. 
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Table 4.7  Performance Measure Description 

Mode Function Value Feasibility decision 

Safety 

Full frontal impact 
G1 Chest G 

≤ Baselinei 

G2 Crush displacement 

40% offset impact 

G3 Brake pedal 

G4 Footrest 

G5 Left toepan 

G6 Center toepan 

G7 Right toepan 

G8 Left IP 

G9 Right IP 

NVH 
G10 Torsion mode 

G11 Vertical bending mode 

 

 

In this example, it is assumed that the only source of uncertainty is the thickness 

of the body plates.  The 44 random variables shown in Table 4.8 are used to represent the 

thicknesses.  All random variables follow normal distribution and are statistically 

independent.  The baseline design dB is the mean vector of the 44 random variables, and 

there is no random parameter in this example.  Among those random variables, six 

random variables (X1 to X5 and X8) are common variables for both safety and NVH 

measures, two (X6 and X7) are variables only for safety, and the other 36 random 

variables are only for NVH measures. 

This problem requires three and a half hours for the impact dynamic analysis for 

crash safety and the modal analysis for NVH.  Thus, the actual analysis takes too much 

time to test the proposed method thoroughly.  Ford Motor Company provided full-
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dimensional global (considering the entire design domain) surrogate models so that we 

could use them to demonstrate the proposed method of variable screening.  The full-

dimensional surrogate models may not be accurate, since 44-D is too high to create 

accurate surrogate models, especially for RBDO.  However, to test the proposed method 

of variable screening, the responses from the 44-D global surrogate models are treated as 

true responses in this example.  The maximum dimension at which accurate surrogate 

models can be generated depends on the computational power and nonlinearity of a given 

problem.  In this study, the dynamic Kriging (DKG) method (Zhao et al., 2011) is used 

for an accurate surrogate model, and 18-D is targeted as the maximum degrees of 

freedom of DKG models.  The Iowa-Reliability-Based Design Optimization (I-RBDO) 

code (Choi et al., 2012) has been used to generate DKG models and carry out RBDO. 
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Table 4.8  Input Random Variables 

RVs Dist. 
type dB ST 

DEV dL dU RVs Dist. 
type dB ST 

DEV dL dU 

X1 Normal 1.9 0.05 1.5 2.3 XN1 Normal 0.9 0.03 0.7 1.1 

X2 Normal 1.91 0.05 1.5 2.3 XN2 Normal 1.1 0.03 0.8 1.4 

X3 Normal 2.51 0.06 2.0 3.0 XN3 Normal 1.55 0.05 1.2 1.9 

X4 Normal 2.4 0.06 1.9 2.9 XN4 Normal 0.9 0.03 0.7 1.1 

X5 Normal 2.55 0.06 2.0 3.1 XN5 Normal 1.5 0.03 1.2 1.8 

X6 Normal 2.25 0.06 1.8 2.7 XN6 Normal 1.2 0.03 0.9 1.5 

X7 Normal 2.25 0.06 1.8 2.7 XN7 Normal 1.1 0.03 0.8 1.4 

X8 Normal 1.5 0.03 1.2 1.8 XN8 Normal 1.52 0.05 1.2 1.9 

X10 Normal 1.28 0.03 0.9 1.6 XN9 Normal 0.8 0.03 0.6 1.0 

X11 Normal 1.4 0.03 1.0 1.8 XN10 Normal 0.8 0.03 0.6 1.0 

X12 Normal 1.1 0.03 0.8 1.4 XN11 Normal 1.2 0.03 0.9 1.5 

X13 Normal 2.2 0.06 1.7 2.7 XN12 Normal 0.75 0.03 0.6 0.9 

X14 Normal 1.5 0.03 1.2 1.8 XN13 Normal 0.75 0.03 0.6 0.9 

X15 Normal 1.25 0.03 0.9 1.6 XN14 Normal 0.75 0.03 0.6 0.9 

X16 Normal 2.5 0.06 2.0 3.0 XN15 Normal 1.0 0.03 0.8 1.2 

X17 Normal 2.0 0.05 1.5 2.5 XN16 Normal 1.14 0.03 0.9 1.4 

X18 Normal 1.4 0.03 1.1 1.7 XN17 Normal 1.2 0.03 0.9 1.5 

X20 Normal 1.22 0.03 0.9 1.5 XN18 Normal 1.4 0.03 1.1 1.7 

X23 Normal 0.75 0.03 0.6 1.0 XN19 Normal 1.2 0.03 0.9 1.5 

X24 Normal 1.9 0.05 1.5 2.3 XN20 Normal 1.4 0.03 1.1 1.7 

X25 Normal 0.65 0.03 0.5 0.8 XN21 Normal 2.13 0.06 1.7 2.6 

X26 Normal 0.85 0.03 0.6 1.1       

X27 Normal 0.85 0.03 0.6 1.1       
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4.3.1   Variable Screening 

At the baseline design dB, which is the initial design as shown in Table 4.8, all 11 

performance measures in Table 4.7 are active.  That is, the value of every performance 

measure at the baseline design is the same as the baseline values, with B
iG = Baselinei, i = 

1~11.  Therefore, the proposed variable screening method is performed for the problem at 

the baseline design.  The number of samples ns, initial number of repeated calculations 

nr0, significance level α, false negative rate β, and threshold value γ are set as 50, 50, 

0.05, 0.05, and 1.0, respectively.  Four hundred eighty-four (44 design variables × 11 

performance measures) 1-D surrogate models with quadratic interpolation are generated 

using 89 DoE analyses (i.e., simulation samples).  It is noted that 11 values of 

performance measures are obtained from one DoE analysis.  The results of partial output 

variances iv  are listed in Table 4.9 and Table 4.10 for every performance measure.  The 

partial output variances of the important variables for each performance measure are 

marked with bold font.  It is noted that only partial output variances of X1~X8 are listed in 

Table 4.9 since G1~G9 are only a function of X1~X8 as the variable screening method 

identified the partial output variances to be zero for other random variables.  In Table 

4.10, X6 and X7 have zero partial output variances as G10 and G11 are not functions of X6 

and X7.  In the last three rows of Table 4.9 and Table 4.10, the sums of partial output 

variances of selected variables, the sums of all partial output variances, and their ratios 

are listed.  As explained in previous sections, this is the estimated ratio between the 

captured output variance in selected variables to the total output variance.  It is estimated 

that a minimum of 90.3% of the total output variance is captured in the selected variables.  

In total, 14 random variables: X1, X2, X3, X4, X5, X6, X7, X8, X10, X20, X23, X25, X26, and 

XN1, are selected as important variables.  Accordingly, 14 design variables, which are the 

means of the selected random variables, are considered as important design variables. 
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Table 4.9  Partial Output Variances iv  (G1~G9)  

RVs G1 G2 G3 G4 G5 G6 G7 G8 G9 

X1 2.37E−02 3.75E+00 4.06E+01 1.11E+01 1.94E+00 1.73E+00 6.21E−01 3.45E−01 5.75E−01 

X2 1.88E−02 1.01E+00 3.55E−01 1.86E+00 2.07E+00 2.06E+00 1.09E+00 4.03E−01 2.69E−01 

X3 5.08E−05 1.76E−02 1.05E+01 9.74E+00 5.95E+00 4.38E+00 2.00E+00 2.37E−01 2.24E−02 

X4 1.66E−04 9.27E−02 3.91E+00 1.79E+00 2.65E−01 6.65E−02 1.73E−03 4.78E−03 9.65E−03 

X5 1.12E−04 1.37E−04 2.74E+00 2.23E+00 4.90E−01 9.11E−01 9.30E−01 1.79E−01 7.94E−02 

X6 4.58E−05 2.77E+00 1.64E−01 8.14E−02 8.18E−01 1.60E−01 1.70E−01 3.95E−02 3.27E−02 

X7 2.32E−03 1.34E−01 1.91E−01 1.50E−01 2.75E+00 1.71E+00 5.66E−01 1.10E−01 2.77E−01 

X8 1.23E−03 6.28E−02 4.39E−02 3.02E−01 5.35E−01 5.45E−01 3.27E−01 6.25E−02 4.87E−02 

Selected 4.61E−02 7.53E+00 5.78E+01 2.67E+01 1.46E+01 1.13E+01 5.70E+00 1.38E+00 1.28E+00 

All 4.64E−02 7.84E+00 5.85E+01 2.73E+01 1.48E+01 1.16E+01 5.71E+00 1.38E+00 1.31E+00 

Selec./All 99.4% 96.0% 98.8% 97.8% 98.6% 97.4% 99.8% 100.0% 97.7% 
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Table 4.10  Partial Output Variances iv  (G10 and G11) 

RVs G10 G11 RVs G10 G11 RVs G10 G11 

X1 1.30E−03 1.48E−03 X17 4.24E−07 2.01E−04 XN8 2.06E−05 5.45E−05 
X2 4.39E−05 3.44E−05 X18 9.71E−06 3.33E−05 XN9 1.61E−06 1.89E−05 
X3 8.95E−04 3.05E−04 X20 2.21E−03 1.84E−03 XN10 5.11E−06 1.83E−06 
X4 8.74E−05 2.63E−05 X23 2.67E−03 1.13E−03 XN11 1.56E−07 1.12E−07 
X5 3.06E−04 4.23E−05 X24 2.35E−05 6.89E−05 XN12 1.83E−06 3.10E−05 
X6 0 0 X25 4.85E−04 7.31E−03 XN13 1.69E−07 8.19E−07 
X7 0 0 X26 4.59E−03 1.06E−02 XN14 9.08E−08 3.75E−05 
X8 5.56E−04 1.89E−04 X27 3.43E−05 3.76E−04 XN15 1.84E−06 1.66E−05 
X10 5.49E−04 3.87E−04 XN1 9.33E−05 6.38E−03 XN16 4.35E−08 2.88E−08 
X11 3.32E−05 2.05E−04 XN2 4.49E−07 7.48E−05 XN17 3.24E−07 1.84E−06 
X12 9.35E−05 3.98E−04 XN3 9.59E−08 2.00E−05 XN18 1.04E−07 1.18E−07 
X13 7.23E−06 3.82E−04 XN4 6.04E−08 8.36E−05 XN19 3.03E−08 3.37E−07 
X14 5.76E−07 1.17E−05 XN5 2.60E−07 1.42E−07 XN20 2.06E−07 2.98E−06 
X15 1.16E−07 1.13E−05 XN6 1.29E−07 2.22E−07 XN21 2.44E−07 9.41E−06 
X16 9.14E−08 1.63E−06 XN7 9.46E−08 7.94E−06    

Selected 1.33E−02 2.87E−02 
All 1.40E−02 3.18E−02 

Selec./All 95.0% 90.3% 
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Sensitivity-variance method introduced in Section 4.2 is applied to performance 

measure G5, and the result is shown in Table 4.11.  Selected random variables for G5 are 

X1~X3 and X5~X8 out of X1~X8.  Among X1~X8, variables X3~X7 have the largest 

standard deviation of 0.06.  However, X4 is not selected among them because it has small 

design sensitivity compared to others.  Here, the design sensitivities are calculated at the 

design point using the forward finite difference method (FDM) with 0.1% perturbation.  

By contrast, X8 is selected as an important variable even though it has smallest standard 

deviation of 0.03.  Again, this is because it has relatively large sensitivity and induces 

large output variances. 

 

Table 4.11  Result of Sensitivity-Variance Method in G5 

RVs 
STDEV 

(
iXσ ) 

Design 
Sensitivity ( iα ) 

Partial Output 
Variance ( 2 2

ii Xα σ ) 

X1 0.05 27.9105 1.95E+00 

X2 0.05 29.2723 2.14E+00 

X3 0.06 −40.7490 5.98E+00 

X4 0.06 8.7917 2.78E−01 

X5 0.06 −11.6078 4.85E−01 

X6 0.06 14.1289 7.19E−01 

X7 0.06 27.8533 2.79E+00 

X8 0.03 24.3000 5.31E−01 

 

 

Interestingly, the partial output variances using the sensitivity-variance method of 

G5 shown in Table 4.11 are close to the result shown in the sixth column of Table 4.9.  In 
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fact, the same variables as those in the variable screening method will be selected by 

using the sensitivity-variance method throughout all 11 constraints.  However, the 

sensitivity-variance method has the possibility of choosing undesirable variables as 

shown in the analytical examples in Section 4.2.  In Figure 4.1, the shape of G5 when 

each Xi is random is shown.  It is easily anticipated that the design sensitivity of G5 with 

respect to Xi could be very small or even zero so that the sensitivity-variance method may 

provide inaccurate partial output variance; this can be prevented if the variable screening 

method is used. 

 

 
Figure 4.1  Shape of G5 when Each Xi Is Random 
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Table 4.12  Partial Output Variance of X2 in G6 at DDO Optimum Design 

Method Perturbation Selection Design 
sensitivity 

Partial 
output 

variance 
Accuracy 

Sensitivity-
variance 

Forward, 1% No −5.83E+00 8.49E−02 56.6% 

Forward, 0.5% Yes −6.30E+00 9.94E−02 66.3% 

Forward, 0.1% Yes −6.68E+00 1.12E−01 74.7% 

Central, 1% Yes −6.79E+00 1.15E−01 76.7% 

Central, 0.5% Yes −6.78E+00 1.15E−01 76.7% 

Central, 0.1% Yes −6.78E+00 1.15E−01 76.7% 

Variable 
screening - Yes - 1.51E−01 100.7% 

Accurate - Yes - 1.50E−01 100.0% 

 

 

The sensitivity-variance method requires accurate design sensitivity.  In practical 

engineering problems, design sensitivity might be calculated using FDM.  To use FDM, a 

user determines perturbation method (forward, backward, or central) and perturbation 

size, and the result of the sensitivity-variance method could depend on the user’s choice.  

In Table 4.12, partial output variance of X2 in G6 at deterministic design optimization 

(DDO) optimum design with various methods is shown.  It can be seen that X2 is not 

selected as an important variable when design sensitivity is calculated using forward 

FDM with 1% perturbation.  The partial output variance is only 56.6% of that found 

using the accurate method with 100,000 realizations of X2.  To obtain more accurate 

design sensitivity with forward FDM, small perturbation is required as shown in 

Table 4.12.  However, small perturbation does not always provide accurate design 

sensitivity, and determining appropriate perturbation size would require extra DoE 

samples.  Central FDM provides more accurate design sensitivity, and it is insensitive to 
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perturbation size.  However, the partial output variance with central FDM sensitivity 

shows at most 76.7% accuracy compared to the accurate method.  It is noted that the 

variable screening method would not require perturbation size determination.  Moreover, 

a user can perform the proposed variable screening method using only one more DoE 

sample than the sensitivity-variance method with central FDM. 

Since we have 44-D global surrogate models for this example, GSA can be 

carried out to verify the effectiveness of the proposed method.  Among various GSA 

methods, the global sensitivity index method, which can identify the global effect of the 

variables of interest on the output, is used here.  The main strength of the global 

sensitivity index method is that it can find interactions between all variables (not 

statistical correlation between random variables).  All random variables are assumed to 

follow uniform distribution in their corresponding design domain of dL and dU, and 

global sensitivity indices are calculated using the Monte Carlo simulation (MCS) method 

with 1 million MCS samples (Sobol, 2001).  There are many global sensitivity indices in 

this 44-D problem; the total sensitivity index tot
iS  is used for variable ranking and 

screening.  The total sensitivity index tot
iS  is a “total influence of the i-th random 

variable” to the output.  That is, it indicates the main effect plus interactions of the i-th 

random variable with other random variables (Chen et al., 2005).  The results are listed in 

Table 4.13 and Table 4.14.  To identify important random variables, the mean value of 
tot
iS  is calculated for each constraint, and the random variable, which yields larger tot

iS  

than the mean value, is selected as an important variable and marked in bold font in these 

tables.  In Table 4.13, tot
iS  only for X1 ~ X8 are listed because tot

iS  for other variables are 

zero due to the fact that G1 ~ G9 are functions of X1 ~ X8.  Also, the sum of tot
iS  for the 

selected random variables, the sum of tot
iS  for all random variables, and their ratios are 

listed in the last three rows, respectively. 
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Table 4.13  Global Sensitivity Indices tot
iS  (G1~G9) 

RVs G1 G2 G3 G4 G5 G6 G7 G8 G9 

X1 4.16E−01 3.84E−01 5.23E−01 2.68E−01 1.74E−01 1.89E−01 2.07E−01 2.56E−01 4.35E−01 

X2 3.46E−01 1.18E−01 1.04E−01 1.88E−01 1.98E−01 2.09E−01 1.66E−01 2.62E−01 2.07E−01 

X3 7.83E−03 5.75E−03 3.28E−01 5.07E−01 5.18E−01 4.97E−01 4.92E−01 2.69E−01 4.96E−02 

X4 1.89E−02 2.23E−02 7.92E−02 1.34E−01 1.25E−01 1.38E−01 1.42E−01 7.38E−02 2.87E−02 

X5 7.50E−03 −7.22E−04 1.40E−01 2.10E−01 1.53E−01 1.76E−01 1.78E−01 1.90E−01 9.10E−02 

X6 5.65E−02 2.67E−01 2.08E−02 5.01E−02 1.11E−01 1.15E−01 1.67E−01 5.13E−02 2.74E−02 

X7 8.13E−02 5.65E−03 1.77E−02 4.52E−02 1.59E−01 1.60E−01 1.76E−01 6.73E−02 1.73E−01 

X8 3.23E−02 2.06E−02 4.02E−03 2.33E−02 3.82E−02 4.09E−02 5.21E−02 7.13E−02 6.14E−02 

Selected 9.32E−01 8.12E−01 1.17E+00 1.40E+00 1.48E+00 1.52E+00 1.58E+00 1.24E+00 1.07E+00 

All 9.66E−01 8.23E−01 1.22E+00 1.43E+00 1.48E+00 1.52E+00 1.58E+00 1.24E+00 1.07E+00 

Selec./All 96.5% 98.7% 95.9% 97.9% 100.0% 100.0% 100.0% 100.0% 100.0% 
 

 

 

 

66 



www.manaraa.com

 

Table 4.14.  Global Sensitivity Indices tot
iS  (G10 and G11) 

RVs G10 G11 RVs G10 G11 RVs G10 G11 

X1 1.05E−01 7.09E−02 X17 3.30E−04 1.46E−02 XN8 −8.85E−04 −1.34E−03 
X2 1.01E−03 2.38E−03 X18 −4.77E−04 −2.50E−04 XN9 8.54E−04 −1.71E−03 
X3 5.72E−02 1.01E−02 X20 2.07E−01 9.17E−02 XN10 1.28E−04 −1.07E−04 
X4 8.66E−03 2.65E−03 X23 1.34E−01 3.57E−02 XN11 −2.72E−04 −2.85E−05 
X5 3.29E−02 5.69E−03 X24 −1.60E−03 −8.39E−04 XN12 −1.51E−04 −1.94E−04 
X6 0 0 X25 1.12E−02 9.79E−02 XN13 −5.24E−05 1.59E−04 
X7 0 0 X26 2.96E−01 3.80E−01 XN14 −3.88E−05 −6.91E−05 
X8 4.73E−02 5.89E−03 X27 6.04E−03 2.38E−02 XN15 1.20E−04 4.59E−04 
X10 5.98E−02 1.99E−02 XN1 5.62E−03 1.65E−01 XN16 8.87E−05 2.85E−04 
X11 3.86E−03 1.67E−02 XN2 −1.11E−04 2.31E−03 XN17 −6.09E−05 −3.61E−04 
X12 1.34E−02 2.88E−02 XN3 1.13E−04 1.33E−03 XN18 −1.12E−05 −9.18E−05 
X13 3.20E−04 1.50E−02 XN4 1.54E−04 −2.50E−03 XN19 1.10E−04 1.23E−03 
X14 2.24E−04 −4.65E−04 XN5 −2.96E−04 9.10E−04 XN20 −1.67E−04 −8.38E−04 
X15 −1.33E−04 1.36E−03 XN6 2.34E−04 −2.32E−05 XN21 6.77E−05 −6.44E−04 
X16 −1.94E−04 2.42E−03 XN7 −1.61E−05 −3.27E−04    

Selected 9.39E−01 8.94E−01 
All 9.87E−01 9.87E−01 

Selec./All 95.1% 90.6% 
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Using the global sensitivity index method, 16 random variables are selected as 

shown in Table 4.15.  Those 16 random variables include all 14 random variables 

selected using the proposed method as shown in Table 4.15.  Moreover, if we limit it to 

14 random variables to be selected, X12 and X27 will not be selected as they have the least 
tot
iS  among the selected variables for G11 as shown in Table 4.14.  Thus, the selected 14 

random variables by both methods are identical.  The ratio between the sensitivity indices 

of selected variables and all variables has no physical meaning.  However, it is an 

indicator that shows how much variance is captured by the selected random variables.  

The results are quite similar to those of the proposed method as shown in Tables 4.9 and 

4.10 and Tables 4.13 and 4.14, respectively.  Hence, it is demonstrated that the proposed 

variable screening method is quite effective even though it does not require global 

surrogate models like the global sensitivity index method. 

 

Table 4.15  Selected Random Variables 

Method Selected variables 

Proposed method X1, X2, X3, X4, X5, X6, X7, X8, X10, X20, X23, 
X25, X26, XN1 (14 RVs) 

Global sensitivity 
index 

X1, X2, X3, X4, X5, X6, X7, X8, X10, X12, X20, 
X23, X25, X26, X27, XN1 (16 RVs) 
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4.3.2   Reliability-Based Design Optimization 

For this example, RBDO is formulated as 

 

44 44

minimize      Weight( )
subject to     [ ( ) Baseline ] 10%, 1, ,11

, and

B
i i

L U

P G i> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X


 

. (4.6) 

For a comparison study, we considered three cases: (1) a set of 14 random variables is 

selected based on experience without using the proposed variable screening method, (2) 

another set of 14 random variables is selected using the proposed variable screening 

method as shown in Section 4.3.1, and (3) in addition to the 14 random variables selected 

in case 2, four more random variables are selected using the cost function sensitivity for a 

total of 18 design variables to test the effectiveness of the proposed variable screening 

method and the accuracy of the DKG generated by I-RBDO.  The selected design 

variables are listed in Table 4.16. 

 

Table 4.16  Selected Random Variables for RBDO 

Cases Common selection Different selection 

(1) Based on 
experience 

X1, X2, X3, X4, X5, X6, 
X7, X8, X20, X25, XN1 

(11 RVs) 

XN9, XN10, XN11 

(2) Variable screening X10, X23, X26 

(3) Variable screening  
+ Cost Function 

X10, X23, X26 
+ XN4, XN9, XN10, XN11 
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Because the cost function, which is the weight in this problem, is a function of design 

variables d, not random variables X, the function is deterministic.  Therefore, the design 

sensitivity of the cost function with respect to the design variable is calculated by the 

FDM, and the four design variables (and related random variables XN4, XN9, XN10, and 

XN11) that show the largest sensitivity among the unselected design variables are chosen.  

Reliability-based design optimization (RBDO) is carried out with three sets of selected 

random variables.  The optimum design results are summarized in Table 4.17.  The bold 

font indicates chosen design variables, and others are fixed at the baseline design value.  

Also, probabilities of failure, cost function values, and design iteration details are listed in 

Table 4.18.  All RBDOs are carried out using the sampling-based RBDO method in I-

RBDO with 500,000 MCS samples.  For the three cases, DKG surrogate models are 

created, using the DoE sample responses obtained from the 44-D global surrogate 

models, which are treated as true responses, for RBDO.  In addition, the full-dimensional 

RBDO is performed as well using the 44-D surrogate models.  The 44-D RBDO result is 

treated as the true RBDO optimum and used for the purpose of validation of RBDO 

results obtained for the three reduced-dimensional cases. 

Indeed, the optimum design values for d1~d8 are very close to the full-

dimensional 44-D case, as shown in Table 4.17, which shows that the generated DKG 

surrogate models are accurate.  In the three cases, the random variables X1~X8 are 

selected because they have large partial output variance for performance measures 

G1~G9.  This means that they contribute a large portion of the output variance.  Hence, 

finding optimum values for them is the most effective way to reduce the probabilities of 

failure of G1~G9.  Similarly, d22 (corresponding to X26) moves to the upper bound of 1.1 

when it is selected because it has the largest partial output variances of G10 and G11.  The 

design variables d27, d32, d33, and d34 (corresponding to XN4, XN9, XN10, and XN11), 

which are selected by the sensitivity of the cost function, move to their lower bounds of 

0.7, 0.6, 0.6, and 0.9, respectively, to reduce the cost function without significantly 
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affecting the reliability of the optimum design.  On the other hand, even though some 

design variables are selected due to the partial output variances of some constraints, they 

move to their lower bounds.  For example, d24 (corresponding to XN1) moves to the 

lower bound of 0.7 because it has the largest sensitivity for the cost function, even though 

it has the third-largest partial output variance of G11.  That is, via the trade-offs in the 

optimization process, it is moved to the lower bound to minimize the cost function rather 

than to reduce the probability of failure. 
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Table 4.17  RBDO Optimum Design 

Design 
variables 

Corres-
ponding 

RVs 

Baseline 
design 

Based on 
experi-
ence 

Variable 
screen-

ing 

Variable 
screening  

+ Cost 
function 

Full 
dimen-

sion 

d1 X1 1.9 1.8343 1.8366 1.8336 1.8491 
d2 X2 1.91 2.1810 2.1804 2.1806 2.1692 
d3 X3 2.51 2.8528 2.8561 2.8540 2.8803 
d4 X4 2.4 1.9817 1.9810 1.9856 1.9507 
d5 X5 2.55 2.7195 2.7228 2.7261 2.7296 
d6 X6 2.25 2.2543 2.2497 2.2558 2.2408 
d7 X7 2.25 2.3199 2.3185 2.3207 2.3284 
d8 X8 1.5 1.7904 1.7966 1.7860 1.8 
d9 X10 1.28 1.28 0.9 0.9 1.5336 
d10 X11 1.4 1.4 1.4 1.4 1.0038 
d11 X12 1.1 1.1 1.1 1.1 0.9868 
d12 X13 2.2 2.2 2.2 2.2 1.7006 
d13 X14 1.5 1.5 1.5 1.5 1.2 
d14 X15 1.25 1.25 1.25 1.25 0.9 
d15 X16 2.5 2.5 2.5 2.5 2.0 
d16 X17 2.0 2.0 2.0 2.0 1.5033 
d17 X18 1.4 1.4 1.4 1.4 1.1 
d18 X20 1.22 0.9 0.9 0.9 0.9 
d19 X23 0.75 0.75 0.6 0.6 0.6 
d20 X24 1.9 1.9 1.9 1.9 1.5 
d21 X25 0.65 0.6897 0.5429 0.5871 0.8 
d22 X26 0.85 0.85 1.1 1.1 1.1 
d23 X27 0.85 0.85 0.85 0.85 1.1 
d24 XN1 0.9 0.7 0.7 0.7 0.7 
d25 XN2 1.1 1.1 1.1 1.1 0.8 
d26 XN3 1.55 1.55 1.55 1.55 1.2039 
d27 XN4 0.9 0.9 0.9 0.7 0.7 
d28 XN5 1.5 1.5 1.5 1.5 1.2 
d29 XN6 1.2 1.2 1.2 1.2 0.9 
d30 XN7 1.1 1.1 1.1 1.1 0.8 
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Table 4.17  Continued 

Design 
variables 

Corres-
ponding 

RVs 

Baseline 
design 

Based on 
experi-
ence 

Variable 
screen-

ing 

Variable 
screening  

+ Cost 
function 

Full 
dimen-

sion 

d31 XN8 1.52 1.52 1.52 1.52 1.6925 
d32 XN9 0.8 0.6 0.8 0.6 0.6 
d33 XN10 0.8 0.6 0.8 0.6 0.6 
d34 XN11 1.2 0.9 1.2 0.9 0.9 
d35 XN12 0.75 0.75 0.75 0.75 0.6 
d36 XN13 0.75 0.75 0.75 0.75 0.6 
d37 XN14 0.75 0.75 0.75 0.75 0.6 
d38 XN15 1.0 1.0 1.0 1.0 0.8 
d39 XN16 1.14 1.14 1.14 1.14 0.9083 
d40 XN17 1.2 1.2 1.2 1.2 0.9 
d41 XN18 1.4 1.4 1.4 1.4 1.1 
d42 XN19 1.2 1.2 1.2 1.2 0.9 
d43 XN20 1.4 1.4 1.4 1.4 1.1 
d44 XN21 2.13 2.13 2.13 2.13 1.7 
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Table 4.18  Cost, Probabilities of Failure at RBDO Optimum Design, 
and Optimization Details 

Performance 
measure 

Based on 
experience 

Variable 
screening 

Variable 
screening 

+ cost 
function 

Full 
dimension 

Cost 249.10 259.83 244.17 225.68 

G1 10.06% 9.94% 9.96% 9.96% 

G2 10.03% 10.11% 10.04% 9.99% 

G3 0.00% 0.00% 0.00% 0.00% 

G4 0.11% 0.11% 0.09% 0.10% 

G5 1.96% 1.95% 2.04% 1.91% 

G6 9.95% 10.01% 10.02% 9.99% 

G7 9.89% 9.93% 9.95% 10.01% 

G8 10.03% 9.98% 9.91% 9.07% 

G9 10.04% 9.99% 9.87% 9.92% 

G10 0.00% 0.00% 0.00% 0.00% 

G11 10.02% 9.97% 9.93% 10.02% 

No. of design 
iterations 20 30 20 21 

No. of DoE 
samples 2,666 4,358 3,306 - 

 

 

 

To verify once again that the surrogate model generated by DKG is accurate, the 

same three cases are performed using responses from the 44-D global surrogate model 

directly while fixing screened-out variables at their baseline design points.  As shown in 

Table 4.19, the optimums found using DKG and 44-D global surrogate models are very 

close to each other.  Hence, it is confirmed that DKG generated accurate surrogate 

models.  Moreover, it is also verified that RBDO can be conducted based on an accurate 
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surrogate model even for a moderately large-dimensional problem (14 and 18 

dimensions).       

For the three reduced-dimensional cases, the probabilities of failure are calculated 

using only selected variables as random variables, since the other design variables are 

treated as deterministic as explained in Section 3.1.2 with fixed values at the baseline 

design.  In Table 4.18, it can be seen that, in all cases, the target design constraints of 

10% probability failure are closely satisfied as expected at these optimum designs since 

the RBDO considers only the selected variables as random variables.  On the other hand, 

to check correct reliabilities, reliability analyses are carried out at these optimum designs, 

treating all variables as random using the 44-D surrogate models and MCS with 1 million 

samples, as shown in Table 4.20.  It is noted that the probabilities of failure of the full-

dimensional optimum in Table 4.18 and Table 4.20 are different even though the 

discrepancy is negligible.  Theoretically, they should be the same; however, they are not 

equal because different numbers of MCS samples (500,000 and 1 million) are used and 

MCS error is induced.  At the baseline design, all constraints have an approximately 50% 

probability of failure, and this is reasonable because all constraints are active at the 

baseline design.  However, they are not exactly 50% because the constraint functions are 

nonlinear.  Probabilistic constraint results corresponding to G1~G9 are active or feasible 

in both Table 4.18 and Table 4.20.  Due to the fact that G1~G9 are functions of X1~X8, 

and all of them are selected as important variables, the RBDO result with reduced 

dimension and the reliability analysis result with full dimension are very close to each 

other, considering MCS errors.  The constraint G10 shows inactive results regardless of 

which selection design variable set is used. 

All probabilities of failure for the constraint G11 in Table 4.18 satisfy the target 

probability of failure 10%, which makes it obvious that these are the reliability analyses 

results of reduced-dimensional problems.  However, full-dimensional reliability analyses 

at optimum designs show quite different values, as shown in Table 4.20.  Selection based 
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on experience shows a 17.70% probability of failure, which violates the target probability 

of failure significantly.  The variables selected based on experience contain only 55.4% 

(=1.76E−02/3.18E−02ⅹ100%) of the total output variance of G11.  Hence, it cannot find 

any safe design once dimension is reduced.  On the other hand, the probabilities of failure 

for the proposed variable screening method (Case 2) and also the one considering cost 

function (Case 3) are close to the target probability of failure.  The selected variables 

contain 93.4% (=2.97E−02/ 3.18E−02ⅹ100%) and 93.7% (= 2.98E−02/ 3.18E−02ⅹ

100%) of the total output variance of G11 for Case 2 and Case 3, respectively.  Hence it 

can find a correct optimum even with reduced dimension. 
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Table 4.19  RBDO Optimum Design with I-RBDO and True Model 

Design 
variables 

Corresponding 
RVs 

Based on experience Variable screening Var. screen. + cost fn. 

DKG 44-D 
surrogate DKG 44-D 

surrogate DKG 44-D 
surrogate 

d1 X1 1.8343 1.8371 1.8366 1.8359 1.8336 1.8425 
d2 X2 2.1810 2.1799 2.1804 2.1807 2.1806 2.1771 
d3 X3 2.8528 2.8578 2.8561 2.8576 2.8540 2.8654 
d4 X4 1.9817 1.9807 1.9810 1.9851 1.9856 1.9525 
d5 X5 2.7195 2.7222 2.7228 2.7233 2.7261 2.7209 
d6 X6 2.2543 2.2488 2.2497 2.2501 2.2558 2.2464 
d7 X7 2.3199 2.3173 2.3185 2.3169 2.3207 2.3265 
d8 X8 1.7904 1.8 1.7966 1.7985 1.786 1.8 
d9 X10 - - 0.9 0.9 0.9 0.9 
d18 X20 0.9 0.9 0.9 0.9 0.9 0.9 
d19 X23 - - 0.6 0.6 0.6 0.6 
d21 X25 0.6897 0.6875 0.5429 0.5424 0.5871 0.5826 
d22 X26 - - 1.1 1.1 1.1 1.1 
d24 XN1 0.7 0.7 0.7 0.7 0.7 0.7 
d27 XN4 - - - - 0.7 0.7 
d32 XN9 0.6 0.6 - - 0.6 0.6 
d33 XN10 0.6 0.6 - - 0.6 0.6 
d34 XN11 0.9 0.9 - - 0.9 0.9 
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Table 4.20  Reliability Analysis Result Using Full-Dimensional Surrogate Model 

Performance 
measure 

Baseline 
design 

Based on 
experience 

Variable 
screening 

Variable 
screening 

+ cost function 

Full 
dimension 

Cost 269.47 249.10 259.83 244.17 225.68 

G1 48.25% 10.06% 9.96% 10.00% 10.05% 

G2 51.34% 10.02% 10.11% 10.04% 10.09% 

G3 54.14% 0.00% 0.00% 0.00% 0.00% 

G4 55.57% 0.10% 0.12% 0.09% 0.12% 

G5 58.94% 1.96% 1.93% 1.98% 1.91% 

G6 59.70% 10.08% 10.05% 10.05% 10.00% 

G7 59.86% 10.20% 10.04% 9.91% 10.06% 

G8 53.23% 10.02% 10.03% 9.97% 9.14% 

G9 51.15% 10.02% 9.96% 9.96% 9.96% 

G10 49.10% 0.00% 0.00% 0.00% 0.00% 

G11 52.46% 17.70% 11.23% 11.17% 10.05% 
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CHAPTER 5 

CONFIDENCE LEVEL OF RELIABILITY OUTPUT  

FOR CONFIDENCE-BASED RBDO 

In this chapter, a newly developed method to estimate the confidence level of 

reliability output (probability of failure) is presented.  In Section 5.1, the reliability output 

is represented in the general form for further derivations.  In Section 5.2, the probability 

of the reliability output is decomposed into successive conditional probabilities using the 

Bayesian method, and those conditional probabilities are described in Sections 5.3, 5.4, 

and 5.5.  In Section 5.6, a numerical method is proposed to calculate the confidence level.  

Finally, the proposed method is applied to a two-dimensional mathematical example in 

Section 5.7. 

5.1  Reliability Output and Limited Data 

In Section 2.1.3, the reliability output, which is the probability of failure pF, was 

defined using a multi-dimensional integral and an indicator function as 

 
( ) 0

( ) ( ) ( )
N FF G

p f d I f dΩ>
= =∫ ∫X XX

x x x x x


. (5.1) 

where ΩF is the failure domain such that a performance measure G(x) is larger than zero 

(i.e., G(x) > 0) and ( )
F

IΩ •  is an indicator function defined as 

 1, for
( )

0, otherwiseF

FIΩ

∈Ω
≡ 



x
x . (5.2) 

In Eq. (5.1), the input joint probability density function (PDF) fX(x) has a distribution 

type and distribution parameters, which determine the probability of failure.  Hence, Eq. 

(5.1) can be represented in the general form as 

 ( , ) [ ] ( ) ( | , )
F

F
F Fp M P I f M dΩΩ

≡ ∈Ω = ∫ψ X x x ψ x  (5.3) 
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where M and ψ are the input distribution type and input distribution parameters,  

respectively.  If the population data are available, the true input type M and the true 

values of ψ can be obtained.  If this is the case, Eq. (5.3) produces a reliability output 

value.  However, in practical engineering problems, only limited data are available, so M 

and ψ follow probability distributions instead of being fixed types or values.  

Consequently, the reliability output follows a probabilistic distribution, which is affected 

by M, ψ, and the size of the limited data. 

5.2  Probability of Reliability Output 

Consider a limited input data set *x.  The input distribution type M and input 

distribution parameters ψ might be inferred from the given data set *x.  In this study, it is 

assumed that input distribution type M and parameters ψ follow certain probability 

distributions that can be analogized from the given data set *x.  Under the assumption, 

and using the Bayesian approach with the given data *x, a joint PDF of the reliability 

output PF, input distribution type M, and input distribution parameters ψ is obtained as 

 ( , , | * ) ( | , ,* ) ( | ,* ) ( | * )F Ff p M f p M P M f=ψ x ψ x ψ x ψ x . (5.4) 

In Eq. (5.4), it can be seen that the joint PDF is a product of three successive conditional 

probabilities.  If all terms in Eq. (5.4) are available, the marginal PDF of the reliability 

output PF can be obtained by integrating M and ψ in Eq. (5.4) as 

 ( | * ) ( , , | * ) , [0,1]
FP F F F

M
f p f p M d p

Ω
= ∈∑ ∫

ψ

x ψ x ψ . (5.5) 

Furthermore, the cumulative distribution function (CDF) of PF is obtained by integrating 

Eq. (5.5) with respect to the reliability output as 

 
0

( | * ) ( , , | * ) , [0,1]F

F

p

P F F
M

F p f M d d pρ ρ
Ω

= ∈∑∫ ∫
ψ

x ψ x ψ  (5.6) 
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where ρ is the variable that corresponds to the reliability output PF.  The value of CDF of 

PF in Eq. (5.6) represents the probability that PF of a design with limited data is less than 

the specified value pF.  That is, the CDF value is the probability that a design is safer 

(more conservative) than pF.  Hence, it is called the “confidence level” of the reliability 

output pF in this study. 

To obtain the probability of PF in Eqs. (5.5) and (5.6), all terms on the right side 

of Eq. (5.4) need to be identified.  The first term is the probability of PF with the given 

M, ψ and the data *x.  As shown in Eq. (5.3), the reliability output is determined by the 

input distribution type M and parameters ψ.  Consequently, when M and ψ are given, the 

reliability output is a deterministic value, and the probability of it becomes a Dirac-delta 

measure as 

 ( | , ,* ) [ ( , )]
FP F F Ff p M p p Mδ= −ψ x ψ . (5.7) 

The second and third terms on the right side of Eq. (5.4) are obtained in the following 

sections. 

5.3  Input Data 

Before explaining the probabilities of input distribution type M and parameters ψ, 

the given data set *x is described in this section.  For simplicity of explanation, the 

number of data for each input random variable is set to ND.  This can be easily extended 

to a case in which the numbers of data are not the same.  The input data set *x could 

contain the following data subsets: 

 1* {* , ,* }N=x x x , (5.8) 

where N is the number of input random variables, and the data subset *xi for the i-th 

random variable Xi is a column vector with size ND as 
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 (1) (2) ( )* * * *
TND

i i i ix x x =  x 
. (5.9) 

The data subset *xi can be decomposed into two parts as 

 * * *i i i= +x x x  (5.10) 

where * ix  is a column vector with size ND whose total entities are the mean of the data 

as 

 
[ ]* * * * T

i i i ix x x=x   such that   ( )

1

1* *
ND

m
i i

m
x x

ND =

= ∑ . (5.11) 

Some of the input random variables are related to design variables.  If Xi is related to a 

design variable di, the i-th data subset *xi is changed in the reliability-based design 

optimization (RBDO) process as 

 * *RBDO
i i i= +x d x  (5.12) 

where di is the i-th design point vector defined as 

 [ ]T
i i i id d d=d  . (5.13) 

In Eq. (5.12), the input data in the RBDO process is changed to be centered at the 

current design point.  However, *x , which is the dispersion of the data with respect to the 

design point, is maintained in the RBDO process.  The data decomposition in Eqs. (5.10) 

and (5.12) is a usual practice in the RBDO process, but this is discussed in this section to 

note that *x  is the part where the input uncertainty exists and that it remains the same 

while the design is changed during the RBDO process.  This is an important fact in the 

following sections. 
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5.4  Probability of Input Distribution Parameters 

As discussed earlier, the input distribution parameters follow a certain distribution 

instead of being fixed values when only limited data is available.  However, the exact 

distribution of input distribution parameters is not known.  The exact distribution of the 

parameters is available only when population data of the parameters are given.  However, 

the population data of the parameters can be obtained only when the population data of 

the input random variable X are available.  If the population data of X are available, there 

is no issue of limited data.  Otherwise, only an approximated distribution of the input 

distribution parameters can be obtained.  There could be a number of parameters for an 

input model, such as mean, variance (or standard deviation), skewness, kurtosis, 

Spearman’s rho, Kendall’s tau, etc.  In this study, two parameters of mean and variance 

are considered for marginal PDF and CDF, and Kendall’s tau is used for statistical 

correlation between two random variables. 

5.4.1  Probability Distribution of Input Mean and Variance 

The central limit theorem (CLT) is a widely used method for obtaining the 

distribution of the input mean (mean of input random variables X) with the given input 

data.  Though CLT produces the distribution of the input mean under the assumption that 

the data follow normal distribution, it produces a well-approximated distribution of the 

input mean when the input data follow other distributions.  In the same sense, the 

distributions of the input mean and variance are obtained using Bayes’ theorem under the 

assumption that the given input data *x follow normal distribution in this study.  This 

does not mean that the input distribution type M is normal distribution; this is only an 

intermediate assumption to find the approximate distribution of the input mean and 

variance.  It will be shown that the result of Bayes’ theorem is the same as the one from 

CLT.  Also, the non-informative prior, which means that there is no information except 

the given input data, is used for Bayes’ theorem.  
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Under the normality assumption described above and with the non-informative 

prior, the input variance νi, for the i-th independent random variable Xi and the given data 

subset *xi, follows inverse-gamma distribution as (Gelman et al., 2004)  

 2
2 2 ( 1)1| * ~ Inv- ( 1,  ) IG ,

2 2
i

i i i
ND sNDv ND sχ

 −−
− =  

 
x  (5.14) 

where the sample variance 2
is  can be calculated as 

 2 ( ) 2

1

1 1(* ) * *
1 1

ND
m T

i i i i
m

s x
ND ND=

= =
− −∑ x x   . (5.15) 

In Eq. (5.14), 2
is and the amount of data ND consist of the parameters for the 

inverse-gamma distribution.  It is noted that 2
is  is determined by *x  and ND, which do 

not change in the RBDO process.  Hence, the distribution of vi in Eq. (5.14) does not 

change during the RBDO process.  Smaller ND produces larger variability in the input 

variance in Eq. (5.14).  Therefore, the confidence level of reliability output decreases 

when less input data is available. 
In this study, statistical correlation is assumed to happen only between two 

random variables.  When the j-th and k-th input random variables Xj and Xk are 

correlated, the input covariance matrix Σ jk, for the given data subsets *xj and *xk, follows 

inverse-Wishart distribution as (Gelman et al., 2004) 

 ( )1
1| * * ~ Inv-Wishart,jk j k ND jk

−
−Σ x x S  (5.16) 

where Sjk is (ND−1) times the sample covariance matrix for *xj and *xk as 
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( )
( ) ( )

( )
1

*
* * * * * *

*

mND
m mj

jk j k j k j km
m k

Tx
x x

x=

      = =         
∑S x x x x



     



. (5.17) 
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In Eq. (5.16), it can be seen that the distribution of the input covariance matrix Σ jk also 

does not change in the RBDO process because Sjk and ND remain the same.  Smaller ND 

will decrease the confidence level of the reliability output as well in Eq. (5.16). 
The input mean µi of the i-th independent variable Xi, for the given input variance 

νi and data *xi, follows normal distribution as (Gelman et al., 2004) 

 | ,* ~ (* , / )i i i i iv x v NDµ x  . (5.18) 

As Eq. (5.18) is the same as the distribution from CLT, the distributions of the input 

variance and the mean in Eqs. (5.14) and (5.18) are reasonable and trustworthy.  When Xi 

is related to a design variable di, Eq. (5.18) can be expressed as 

 | ,* ~ ( , / )RBDO
i i i i iv d v NDµ x  . (5.19) 

In Eqs. (5.18) and (5.19), smaller ND makes the input mean µi have larger variability, so 

the confidence level of the reliability output decreases.  For the given covariance matrix 

Σ jk as well as input data *xj and *xk, the input mean vector µjk of the correlated variables 

Xj and Xk follows bivariate normal distribution as 

 *
| ,* * ~ ,

*
, jkj

jk jk j k
k

x
x ND

  
  
  

Σ
μ Σ x x  . (5.20) 

Again, Eq. (5.20) coincides with two-dimensional CLT.  Hence, the distributions of the 

input covariance matrix and mean vector in Eqs. (5.16) and (5.20) are valid.  If the 

correlated pair Xj and Xk is related to design variables dj and dk, Eq. (5.20) can be 

represented as 

 
| ,* * ~ ,, jkjRBDO RBDO

jk jk j k
k

d
d ND

  
  
  

Σ
μ Σ x x  . (5.21) 

Also, smaller ND induces larger variability in the input mean vector; as a result, the 

confidence level of the reliability output decreases. 
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5.4.2  Probability Distribution of Kendall’s Tau 

In this study, the copula is used to describe statistical correlation between input 

random variables.  The copula requires a measurement of dependence in the correlated 

input variables.  The Kendall’s tau can be used for the dependence measure; it estimates 

the dependence based on ranks in data pairs.  Consider a correlated input random variable 

pair Xj and Xk.  Then the dependence in the pair can be calculated using the Kendall’s tau 

as (Genest and Favre, 2007) 

 4 1
( 1)

2

ND ND
jk ND

P Qt P
ND ND ND
−

= = −
− 

 
 

 
(5.22) 

where PND and QND are number of concordant and discordant pairs, respectively.  Here, 

two data pairs ( ) ( )(* ,* )m m
j kx x   and ( ) ( )(* ,* )n n

j kx x   for Xj and Xk are said to be concordant 

when ( ) ( ) ( ) ( )(* * )(* * ) 0m n m n
j j k kx x x x− − >     and discordant if ( ) ( ) ( ) ( )(* * )(* * ) 0m n m n

j j k kx x x x− − <    . 

As it is calculated from the data, the calculated value from Eq. (5.22) is a sample 

Kendall’s tau (tjk), not the input Kendall’s tau (τjk).  The insufficient data forces the input 

Kendall’s tau to follow a certain distribution as well.  An approximated distribution of 

τjk is given as (Genest and Favre, 2007) 

 2~ (0,1 )
4

jk jkt
ND

S
τ−

 , (5.23) 

and it can be easily transformed to 

 24
~ , jk

jk jk

S
t

ND
τ

  
     

 , (5.24) 

where 

 2 2

1

1 ( 2 )
ND

jk m m
m

S W W W
ND =

= + −∑  , (5.25) 
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 ( ) ( ) ( ) ( )1 #{ :* * , * * }n m n m
m j j k kW n x x x x

ND
= ≤ ≤    , (5.26) 

 ( ) ( ) ( ) ( )1 #{ :* * , * * }m n m n
m j j k kW n x x x x

ND
= ≤ ≤

    , and (5.27) 

 
1( )NDW W W ND= + + . (5.28) 

The distribution of the Kendall’s tau τjk in Eq. (5.24) is still an approximation, and it is 

known to be closer to the true distribution of τjk as the number of the data ND approaches 

infinity.  When ND is small, the distribution of τjk becomes wide.  Then, τjk can be out of 

its theoretical range [−1, 1].  To alleviate this problem, a 95% probability interval of the 

distribution of τjk in Eq. (5.24) is used in this study.  This is discussed further in Section 

5.6. 

The Kendall’s tau, the input mean, and the variance are statistically independent.  

Hence, the joint PDF of the input distribution parameters is a product of all PDFs 

identified in Sections 5.4.1 and 5.4.2 as 
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. (5.29) 

 

 



www.manaraa.com

 88 

5.5  Probability of Input Distribution Type 

The probability of an input distribution type M with the given input data *x and 

parameters ψ is obtained using Bayes’ theorem as 

 (* | , ) ( | ) (* ; , ) ( | )( | ,* )
(* | , ) ( | ) (* ; , ) ( | )

M M

P M P M L M P MP M
P M P M L M P M

= =
∑ ∑

x ψ ψ x ψ ψψ x
x ψ ψ x ψ ψ

 (5.30) 

where the likelihood function L(*x; M, ψ) is a product of the PDF value at each input 

data point as 

 ( )

( ) ( )

,

(* ; , ) (* | , )

(* ,* | , )

m
i

i m
n n

j k
j k n

i i

jk jk

L M f x M

f x x M

=

×

∏∏

∏∏

x ψ ψ

ψ
. (5.31) 

Here, Mi is the input distribution type for the i-th independent random variable Xi, ψ i is 

{µi, νi}, Mjk is the input distribution type for the j-th and k-th correlated random variables 

Xj and Xk, and ψjk is {µjk, Σ jk, τjk}. 

The first term on the right side in Eq. (5.31) is a marginal PDF for Xi, which is 

expressed as 

 ( | , ) ( ; , )M i iii i i if x M f x vµ=ψ . (5.32) 

The second term in Eq. (5.31) is a joint PDF for the correlated pair Xj and Xk as (Nelson, 

2006) 

 

,1 ,11 ,1 ,22

( , | , )

( , ; ) ( ; , ) ( ; , )
j k

M j k jk M j jk jk M k jk jkjjk k

jk jkf x x M

c u u f x f xθ µ µ= Σ Σ

ψ
 (5.33) 

where 
jkMc  is the copula density function; θjk is the correlation coefficient for the copula, 

which is a function of the Kendall’s tau τjk; and uj and uk are the marginal CDF values of 

the marginal distribution at xj and xk, respectively. µjk,m is the m-th entry of the input 

mean vector µjk, and Σ jk,mn is the mn-th entry of the input covariance matrix Σ jk.  It is 
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noted that the correlation between the input means µjk,1 and µjk,2 is already considered in 

Eqs. (5.20) and (5.21) by using the covariance matrix Σ jk, which has a correlation part.  

Assuming that there is no prior information about which input distribution type is 

preferable, that is, all candidate distribution types are equally probable, the term P(M |ψ) 

in Eq. (5.30) is a constant.  Then, Eq. (5.30) can be simplified as 

 (* ; , )( | ,* )
(* ; , )

M

L MP M
L M

=
∑

x ψψ x
x ψ

. (5.34) 

As mentioned before, there could be a case in which each input data subset has a different 

number of data.  In this case, equations in this chapter can be generalized by replacing ND 

with NDi for the i-th data subset *xi.   

5.6  Calculation of the Confidence Level 

of the Reliability Output 

Since all terms on the right side of Eq. (5.4) are now available in Eqs. (5.7), 

(5.29), and (5.34), the confidence level of the reliability output in Eq. (5.6) at a reliability 

output value pF can be calculated.  When pF is given, Eq. (5.7) needs to be evaluated to 

calculate the confidence level in Eq. (5.6).  However, it is too complicated to solve Eq. 

(5.7) analytically as Eq. (5.7) involves the Dirac-delta measure.  Therefore, the 

confidence level is calculated numerically using Monte Carlo simulation (MCS) as 
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 (5.35) 
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where NMCSψ, NMCSM, M(m), and ψ(n) are the MCS sample size for M and ψ, the m-th 

realization of (M | ψ,*x), and the n-th realization of (ψ |*x), respectively; and [0, ] ( )
FpI ρ  is 

an indicator function whose value is 1 when ρ is in between 0 and pF, and 0 otherwise.  

Here, the realizations of (M | ψ,*x) and (ψ |*x) are drawn in accordance with the 

probabilities in Eqs. (5.29) and (5.34).  As explained in Section 5.4.2, the distribution of 

the Kendall’s tau may be out of the bound [−1, 1] when the amount of data is insufficient, 

and it can cause numerical error in the calculation of Eq. (5.35).  To avoid the error, the 

realizations of Kendall’s tau are drawn from Eq. (5.24), and those out of the 95% 

probability interval of Eq. (5.24) are moved to the closest point in the interval.  The 

overall procedure to evaluate Eq. (5.35) is shown in Figure 5.1.  
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Figure 5.1  Flowchart of Confidence Level Calculation 
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Draw NMCSM sets of input distribution 
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drawn  (NMCSψ×NMCSM) sets

(Reliability analysis)
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5.7  Numerical Example 

To check the confidence levels of the reliability output, three performance 

measures of the Iowa 2-D mathematical problem are considered as 

 2
1 2

1

2 3
2 1 2 1 2

4
1 2 1 2

3 2
1 2

( ) 1
20

( ) 1 (0.9063 0.4226 6) (0.9063 0.4226 6)

0.6(0.9063 0.4226 6) ( 0.4226 0.9063 )
80( ) 1
8 5

X XG

G X X X X
X X X X

G
X X

= −

= − + + − + + −

− + − − − +

= −
+ +

X

X

X

 (5.36) 

where X1 and X2 are input random variables.  The limit states (Gi = 0) of Eq. (5.36) are 

shown in Figure 5.2, and Gi < 0 refers to the feasible area in this example.  If X1 and X2 

follow a benchmark distribution shown in Table 5.1 and the distribution is assumed to be 

known, the point d = [d1  d2]T = [5.0541  1.5918]T in Figure 5.2 is the RBDO optimum 

with a target reliability output of 2.275%.  Hence, the probabilities of failure for G1 and 

G2 are 2.275%.  It can be seen that G3 is an inactive constraint in Figure 5.2. 

 

Table 5.1  Benchmark Input Distribution 

Random 
Variable 

Marginal 
Distribution Mean STDEV Copula Kendall’s 

Tau 

X1 Normal d1 = 5.0541 0.3 
Clayton 0.5 

X2 Normal d2 = 1.5918 0.3 
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Figure 5.2  Limit States of Iowa 2-D Example 
and Contour of Benchmark Distribution 

 

5.7.1  Confidence Level Calculation Using 10 Data Pairs 

As the proposed method is for a limited data problem, 10 pairs of input data are 

randomly drawn from the benchmark distribution in Table 5.1.  To briefly explain 

random data generation, first, two sets of 10 random values are generated from a uniform 

distribution between 0 and 1, i.e., U(0,1), using MATLAB’s “rand” function, and they are 

treated as independent.  Second, they are correlated according to the copula and 

Kendall’s tau in Table 5.1 (Nelsen, 2006).  Finally, they are transformed to random 

variable space (X-space) using the inverse CDF function of the marginal distributions in 

Table 5.1.  The 1*x  and 2*x  of the drawn data are shown as 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

G1(X)

G2(X)

G3(X)

d

X1

X
2

 

 



www.manaraa.com

 94 

 1 1

1 1

1 1

1 4

2 2

1 21

1

1

1

1

1.325 10 2.366 10
2.585 10 4.678 10
4.784 10 1.379 10

2.724 10 5.664 10
3.470 10 9.555 10

* , *
5.248 10
3.123 10
1.008 10

3.806 10
4.070 10

− −

− −

− −

− −

− −

−

−

−

−

−

 × − ×
 × × 
 − × − ×
 

× × 
 − × ×
 = =
− × 

 − × 
 − ×
 × 
 × 

x x 

1

1

1

1

1

6.767 10
3.654 10

1.970 10
2.111 10
4.445 10

−

−

−

−

−

 
 
 
 
 
 
 
 
− × 

 − × 
 ×
 × 
 × 

. (5.37) 

For the input distribution type M, the 20 candidate types listed in Table 5.2 are 

used.  In this example, seven marginal distribution types (normal, lognormal, Weibull, 

Gumbel, gamma, extreme, and extreme type-II) and eight copula types (Clayton, Frank, 

FGM, Gaussian, AMH, Gumbel, A12, and A14) are considered.  Hence, in a bivariate 

and correlated problem, there are 392 (= 7×7×8) combinations.  However, considering all 

392 combinations is ineffective and inefficient since a lot of them have very small 

probability.  Hence, it is reasonable to narrow the number of candidates down.  In this 

example, the 20 most probable types (according to their likelihoods) are selected from 

among those 392 at the design point d using the drawn data, means, and variances of the 

data.  The most probable type has 1.58% of probability and the 20th most probable type 

has 1.10%.  Since they have meaningful probabilities, the 20 of them are selected.  Both 

numbers of MCS samples, NMCSψ and NMCSM, are set to 10,000.  Finally, following the 

procedure shown in Figure 5.1, the confidence level of the reliability output is calculated 

with the drawn 10 data pairs and 20 candidate distribution types, and the obtained result 

is shown in Figure 5.3. 
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Table 5.2  Candidate Input Distribution Types at d with 10 Data Pairs 

No. Marginal type for X1 Marginal type for X2 Copula 

1 Weibull Weibull Gaussian 

2 Extreme Weibull Gaussian 

3 Extreme Extreme Gaussian 

4 Extreme Extreme A12 

5 Weibull Extreme Gaussian 

6 Weibull Extreme A12 

7 Weibull Weibull A14 

8 Weibull Weibull A12 

9 Weibull Normal Gaussian 

10 Extreme Weibull A14 

11 Extreme Weibull A12 

12 Extreme Normal Gaussian 

13 Normal Weibull Gaussian 

14 Extreme Extreme A14 

15 Normal Weibull A14 

16 Gamma Weibull Gaussian 

17 Weibull Extreme A14 

18 Normal Weibull A12 

19 Gamma Weibull A14 

20 Lognormal Weibull Gaussian 
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Figure 5.3  Confidence Level of Reliability Output with 10 Data Pairs 

 

As mentioned before, the reliability output (probability of failure) at the point d is 
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d and thus a very conservative design with respect to G3.  As the input data in Eq. (5.37) 

are positively correlated, the contour of the joint PDF of X is wider in the X1 = X2 

direction, whereas it is shorter in the X1 = −X2 direction (see Figure 5.2).  That is, more 

uncertainties are induced in X1 = X2 direction than in the X1 = −X2 direction.  Hence, the 

confidence level for G1 (8.44%), which is affected by uncertainties in the X1 = X2 

direction, is much smaller than the confidence level for G2 (47.5%), which is affected by 

uncertainties in the X1 = −X2 direction as shown in Figures 5.2 and 5.3. 

5.7.2  Confidence Level Calculation Using 20 Data Pairs 

To understand how the amount of data affects the confidence level of the 

reliability output, 20 pairs of data are drawn again from the benchmark distribution in 

Table 5.1.  Using the drawn data, 20 new candidate distribution types are chosen 

according to the same procedure used for the 10 pairs of data.  
1*x  and 

2*x  of the 20 

pairs of data and the candidate input distribution types are shown in Eq. (5.38) and Table 

5.3, respectively. 

The obtained confidence level result is shown in Figure 5.4.  At the same design 

point d, the confidence levels, at pF = 2.275%, are 36.7% and 65.5% for G1 and G2, 

respectively.  Therefore, the result agrees with the expectation that the confidence level is 

more assured as more data are available.  For the inactive constraint G3, the confidence 

level is 100%, which has not changed much from the case of the 10 data pairs.  This is 

reasonable because the confidence level is already maximized even with the 10 data 

pairs.  The confidence level for G1 (36.7%) is still smaller than the confidence level for 

G2 (65.5%) for the same reason as for the case of the 10 data pairs. 

Throughout two examples with 10 and 20 data pairs, it is shown that conventional 

RBDO, which requires true input distribution, cannot assure target reliability output when 

insufficient data are provided.  Therefore, the confidence level of the reliability output 

should be incorporated in the RBDO for limited input data.  It also can be seen that the 
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developed method considers number of provided data appropriately when it is estimating 

the confidence level. 
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(5.38) 
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Table 5.3  Candidate Input Distribution Types at d with 20 Data Pairs 

No. Marginal type for X1 Marginal type for X2 Copula 

1 Lognormal Gamma Clayton 

2 Normal Normal Clayton 

3 Gamma Gamma Clayton 

4 Weibull Weibull Clayton 

5 Gamma Normal Clayton 

6 Weibull Normal Clayton 

7 Extreme Weibull Clayton 

8 Normal Gamma Clayton 

9 Lognormal Normal Clayton 

10 Extreme Normal Clayton 

11 Lognormal Gamma A12 

12 Gamma Gamma A12 

13 Normal Weibull Clayton 

14 Normal Gamma A12 

15 Lognormal Lognormal A12 

16 Normal Normal A12 

17 Lognormal Lognormal Clayton 

18 Gamma Lognormal A12 

19 Gamma Weibull Clayton 

20 Gamma Normal A12 
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Figure 5.4  Confidence Level of Reliability Output with 20 Data Pairs 
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CHAPTER 6 

FORMULATION AND DESIGN SENSITIVITY 

FOR CONFIDENCE-BASED RBDO 

In this chapter, confidence-based RBDO (C-RBDO) and its design sensitivity are 

presented.  In Section 6.1, C-RBDO is formulated using the confidence level estimation 

of the reliability output developed in Chapter 5 as its probabilistic constraints.  In 

Sections 6.2 and 6.3, the design sensitivity of the confidence level is derived for the 

efficient and effective C-RBDO process.  In Section 6.4, efficiency improvement 

methods are introduced for the C-RBDO.  Finally, performances of the C-RBDO and the 

design sensitivity method are verified in Section 6.5 using numerical examples. 

6.1  Confidence-based RBDO Formulation 

The formulation of an RBDO problem has been shown in Section 2.3 as 

 minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, and
i

Tar
i F

L U NDV N

P G p i NC> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X



 

 (6.1) 

where X is the N-dimensional random variable vector, d is the NDV-dimensional design 

variable vector, Gi is the i-th constraint function, 
i

Tar
Fp  is the target reliability output for 

the i-th constraint, and NC is the number of constraints.  The formulation in Eq. (2.18) is 

based on an assumption that there is no uncertainty in the input probabilistic model.  That 

is, an input distribution type and a set of parameters are selected and assumed to be “true” 

input type and parameters.  However, it is no longer valid when the uncertainty in the 

input probabilistic model exists due to the limited data. 

In Chapter 5, the confidence level of the reliability output has been obtained for 

the limited data.  Therefore, using the confidence level as a probabilistic constraint, the 

RBDO formulation can be changed to a C-RBDO formulation as 
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 minimize      Cost( )
subject to     ( | * ) 1,...,

, and
F ii

Tar Tar
P F i

L U NDV N

F p CL i NC≥ =

≤ ≤ ∈ ∈

d
x

d d d d X 

 (6.2) 

where 
i

Tar
Fp  and Tar

iCL  are the target reliability output and target confidence level for the i-

th constraint, respectively.  By using the two target values, C-RBDO is able to obtain an 

optimum design that satisfies the target reliability output 
i

Tar
Fp  with the target confidence 

level Tar
iCL .  Therefore, the optimum point can secure appropriate conservativeness even 

with a finite number of data. 

In the C-RBDO formulation, both the number of input data and the design point 

affect the confidence level of the reliability output.  The target value Tar
iCL  at 

i

Tar
Fp  can be 

achieved by providing more input data to reduce uncertainty in the input probabilistic 

model or by finding a more reliable optimal design.  If the feasible region of a given 

problem is too small to find a feasible optimum in accordance with Eq. (6.2), increasing 

the amount of input data would be inevitable to satisfy the target criteria.  

6.2  Design Sensitivity of Confidence Level 

The confidence-based RBDO in Eq. (6.2) uses the confidence level of the 

reliability output as its probabilistic constraints.  Consequently, a new design sensitivity 

method for the confidence level is necessary to obtain a C-RBDO optimum design 

accurately as well as efficiently.  For further derivation, the analytical form for the 

cumulative distribution function (CDF) of the reliability output is recalled as 

 
0

0

( | * ) ( , , | * )

( | , ,* ) ( | ,* ) ( | * )

F

F

F

p

P F
M

p

M

F p f M d d

f M P M f d d

ρ ρ

ρ ρ

Ω

Ω

=

=

∑∫ ∫

∑∫ ∫

ψ

ψ

x ψ x ψ

ψ x ψ x ψ x ψ
,  (6.3) 

and the derivative of Eq. (6.3) with respect to a design variable di yields 
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{
[ ]

0

0

( | * )

( | , ,* ) ( | ,* ) ( | * )

( | , ,* ) ( | ,* ) ( | * )

ln ( | ,* ) ln ( | * )

F

F

F

P F
i

p

Mi

p

M

i

F p
d

f M P M f d d
d

f M P M f

P M f d d
d

ρ ρ

ρ

ρ

Ω

Ω

∂
∂

∂
=

∂

=

∂
× + ∂ 

∑∫ ∫

∑∫ ∫

ψ

ψ

x

ψ x ψ x ψ x ψ

ψ x ψ x ψ x

ψ x ψ x ψ

. (6.4) 

Compared with Eq. (6.3), there are two additional terms in Eq. (6.4).  The first additional 

term is the change rate of the natural logarithm of the probability of input distribution 

type to the design change.  This term is explained in detail in Section 6.3 and is defined 

for now as 

 
ln ( | ,* ) ( , ,* , )M i

i

P M S M d
d
∂

≡
∂

ψ x ψ x . (6.5) 

As discussed in Section 5.3, a design change in the optimization process does not 

affect the dispersion of input data.  That is why the probabilities of the input variance and 

covariance matrix are independent of the design variable di.  Likewise, the probability of 

the input Kendall’s tau is not related to the design variable.  Therefore, the second 

additional term in Eq. (6.4), which is the change rate of the natural logarithm of the 

probability of input parameters to the design change, is derived when di is the design 

variable that corresponds to an independent random variable Xi as 

 ( )ln ( | * ) ln ( | ,* )

( , , , )

i i
i i i

i i i
I

i i i

ND d
f f v

d d v
S v d ND

µ
µ

µ

−∂ ∂
= =

∂ ∂

≡ ψ

ψ x x
. (6.6) 

where µi, vi and ND are given input mean, variance and number of data for the input 

random variable Xi, respectively.  Consider a correlated random variable pair Xj and Xk 
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and a design variable dj related to Xj.  Then, the second additional term in Eq. (6.4) for dj 

is derived as 

 

( )
, ,12 ,

2
, ,11 ,22,12 ,11 ,22

ln ( | * ) ln ( | ,* * )

( )

1 /

( , , , , )

,jk jk j k
j j

jk m j jk jk n k

jk mm jk jkjk jk jk

C
jk jk j k

f f
d d

d dND

S d d ND

µ µ

∂ ∂
=

∂ ∂

 − Σ −
= − 

Σ Σ Σ − Σ Σ Σ  

≡ ψ

ψ x μ Σ x x

μ Σ

 (6.7) 

where µjk and µjk,m are given input mean vector and its m-th entry, respectively, Σ jk and 

Σ jk,mn are given input covariance matrix and its mn-th entry, respectively, m = 1 and n = 2.  

For the other design variable dk, Eq. (6.7) can be used after changing the position of dj 

and dk and setting m = 2 and n = 1.   

Although both of the additional terms in Eq. (6.4) are obtained in Eqs. (6.5), (6.6), 

and (6.7), the design sensitivity cannot be calculated analytically.  The reason is the same 

as why Eq. (6.3) is evaluated using the Monte Carlo simulation (MCS) method in Section 

5.6.  Hence, the design sensitivity in Eq. (6.4) is calculated using the MCS method.  The 

design sensitivity for the design variable di, which corresponds to the independent input 

random variable Xi, is  

 
{

}

( ) ( )1
[0, ]

( ) ( ) ( ) ( )

( * ) ( , )

( , ,* , ) ( , , , )

M

F FM

NMCS NMCS
m n

P F p FNMCS NMCS
n mi

m n I n n
M i i i i

F p I p M
d

S M d S v d NDµ

∂   ∂

 × + 

∑ ∑
ψ

ψ

ψ

x ψ

ψ x



, (6.8) 

and the design sensitivity for the design variable dj, which corresponds to the correlated 

input random variable Xj, is 

 
{

}

( ) ( )1
[0, ]

( ) ( ) ( ) ( )

( * ) ( , )

( , ,* , ) ( , , , , )

M

F FM

NMCS NMCS
m n

P F p FNMCS NMCS
n mj

m n C n n
M j jk jk j k

F p I p M
d

S M d S d d ND

∂   ∂

 × + 

∑ ∑
ψ

ψ

ψ

x ψ

ψ x μ Σ



. (6.9) 
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Equations (6.8) and (6.9) are quite similar to the confidence level of the reliability output.  

Only the additional terms in Eqs. (6.5), (6.6), and (6.7) have to be calculated at each MCS 

sample, and they are computationally inexpensive.  Hence, the design sensitivity can be 

calculated with little additional effort during the calculation of the confidence level of the 

reliability output.  It is noted that the equations in this section can be easily generalized 

by replacing ND with NDi for the i-th data subset *xi in a case where each input data 

subset has a different number of data. 

6.3  Derivative of Natural Logarithm of Probability of Input 

Distribution Type 

In Section 6.2, Eq. (6.5), which is the change rate of the natural logarithm of the 

probability of input distribution type to the design change, is required for the design 

sensitivity of the confidence level in Eqs. (6.8) and (6.9).  The easiest way to calculate 

Eq. (6.5) is with the finite difference method (FDM) because it only requires evaluations 

of the probability of input distribution type in Eq. (5.34) at perturbed design and current 

design.  However the FDM could be inaccurate when appropriate perturbation size is not 

provided.  Specifically, when Eq. (5.34) involves several different input distribution 

types, there may be no unique perturbation size that is appropriate for all types.  Hence, 

determining perturbation size could cause unnecessary difficulty and inaccuracy when 

calculating Eq. (6.5) using the FDM. 

If analytical expressions of marginal probability density functions (PDFs) and 

copulas are available, Eq. (6.5) could be derived analytically by taking the derivative of 

the natural logarithm of Eq. (5.34) with respect to the design variable.  First, the 

expression of data in Eq. (5.12) is recalled and the superscript “RBDO” is dropped for 

simplicity:  

 * *i i i= +x d x  (6.10)  
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where 

 (1) (2) ( )* * * *
TND

i i i ix x x =  x    and (6.11) 

 [ ]T
i i i id d d=d  . (6.12) 

Knowing that * ix  is invariant in the C-RBDO process, the derivative of a function h(*x) 

with respect to design di is the summation of the derivative of the function with respect to 

data ( )* j
ix : 

 
( )

1
(* ) (* )

*

ND

j
ji i

h h
d x=

∂ ∂
=

∂ ∂∑x x . (6.13)  

In Eq. (5.33), the probability of input distribution type is obtained as 

 (* ; , )( | ,* )
(* ; , )

M

L MP M
L M

=
∑

x ψψ x
x ψ

 (6.14)  

where the likelihood function L(*x; M, ψ) is defined as 

 ( ) ( ) ( )

,

(* ; , ) (* | , ) (* ,* | , )m n n
i j k

i m j k n
i i jk jkL M f x M f x x M= ∏∏ ∏∏x ψ ψ ψ . (6.15) 

If the p-th random variable Xp is statistically independent, PDFs of Xp can be set apart 

from Eq. (6.15) for further derivation as 

 

( )

( ) ( ) ( )

,

(* ; , ) (* | , )

(* ,* | , ) (* ; , )
p

m
i

i p m

n n m
j k M p p p

j k n m

i i

jk jk

L M f x M

f x x M f x vµ
≠

=

×

∏∏

∏∏ ∏

x ψ ψ

ψ
. (6.16) 

Furthermore, if the q-th random variable is statistically correlated with the r-th random 

variable, Eq. (6.15) also can be expressed by separating out joint PDFs of Xq and Xr as 
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{ }

( ) ( ) ( )

,

( ) ( ) ( ) ( )

(* ; , )
(* | , ) (* ,* | , )

(* ,* ; ) (* ; , ) (* ; , )
qr q r

m n n
i j k

i m j q k r n

n n n n
M q r M q q q M r r r

n

i i jk jk

L M
f x M f x x M

c u u f x v f x vθ µ µ

≠ ≠

=

×

∏∏ ∏ ∏

∏

x ψ
ψ ψ . 

(6.17) 

where ( ) ( )* (* ; , )
q

n n
q M q q qu F x vµ=  which is the CDF of Xq at ( )* n

qx .  Then, the derivatives of 

the natural logarithms of Eqs. (6.16) and (6.17) are derived using Eq. (6.13) as 

 

( )
( )

1

( )

( ) ( )
1

ln (* ; , ) ln (* ; , )
*

(* ; , )1
(* ; , ) *

p

p

p

ND
m

M p p pm
mp p

mND
M p p p

m m
m M p p p p

L M f x v
d x

f x v

f x v x

µ

µ

µ

=

=

∂ ∂
=

∂ ∂

∂
=

∂

∑

∑

x ψ

  and (6.18) 

 

{ } { }

{ }

( ) ( ) ( )
( )

1

( ) ( )

( )
( )

1

( )

( ) ( )

ln (* ; , )

ln (* ,* ; ) ln (* ; , )
*

ln (* ,* ; )
(* ; , )

*

(* ; , )1
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qr q

qr

q

q

q

q

ND
n n n

M q r M q q qn
n q

n n
ND M q r n

M q q qn
n q

n
M q q q

n n
M q q q q

L M
d

c u u f x v
x

c u u
f x v

u

f x v

f x v x

θ µ

θ
µ

µ

µ

=

=

∂
∂

∂  = + ∂

∂
=
 ∂


∂
+ 

∂ 

∑

∑

x ψ

, (6.19) 

respectively.  In Eqs. (6.18) and (6.19), the derivatives of PDF f and copula density 

function c are required, and the derivatives of commonly used PDFs and copula density 

functions are shown in Table 6.1 and Table 6.2, respectively.  Using the derivatives, Eqs. 

(6.18) and (6.19), the derivative of the natural logarithm of Eq. (6.14) can be obtained as 

 
ln ( | ,* ) ln (* ; , ) ln (* ; , )

1ln (* ; , ) (* ; , ) ln (* ; , )
(* ; , )

Mi i

Mi i
M

P M L M L M
d d

L M L M L M
d L M d

∂ ∂  = − ∂ ∂  
 ∂ ∂

= −  ∂ ∂ 

∑

∑∑

ψ x x ψ x ψ

x ψ x ψ x ψ
x ψ

. (6.20)  
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Also, Eq. (6.20) is exactly the same as Eq. (6.5).  Hence, the sensitivity for C-RBDO in 

Eqs. (6.8) and (6.9) can be obtained using Eq. (6.20).  

 

Table 6.1  PDFs and Derivatives of PDFs 

Distribution 
type PDF, fX(x) Derivative of PDF, df/dx 

Normal 
21

21
2

x

e
µ

σ

πσ

− −     2

( ) ( )X
x f xµ
σ
−

−  

Lognormal 
21 ln

21
2

x

e
x

µ
σ

πσ

− −     2

1 ln1 ( )X
x f x

x
µ

σ
− − + 

 
 

Weibull 
1

exp
k kk x x

ν ν ν

−     −    
     

 
11 ( )

k

X
k k x f x

x ν ν

− −  −  
   

 

Gumbel ( )exp ( ) xx e α να α ν − − − − −   ( )( ) 1 ( )x
Xe f xα να − − −  

Gamma 
/

1

( )

x b
a

a

ex
a b

−
−

Γ
 

1 1 ( )X
a f x

x b
− − 

 
 

Extreme 
1 exp

x a
bx a e

b b

− −
− 

 
 1 1 exp ( )X

x a f x
b b

 −  −  
  

 

Extreme 
type-II 

1

exp
a aa b b

b x x

+     −    
     

 
1 1 ( )

a

X
ba a f x

x a
    − −  

   
 

 

 



www.manaraa.com

 

Table 6.2  Copula Density Functions and Derivatives 

Copula Copula density function, c(u,v;θ) Derivative, dlnc/du 

Clayton (1 ) (2 1/ )(1 )( ) ( 1 )uv u vθ θ θ θθ − + − − − ++ − + +  
(1 )(2 1) 1

1
u

u v u

θ

θ θ

θ θ− +

− −

+ +
−

− + +
 

Frank 
(1 )

(1 ) (1 ) ( ) 2

( 1)
{ }

u v

u v u v

e e
e e e e

θ θ

θ θ θ θ

θ + +

+ + +

−
− − +

 
{ }( ) (1 )

(1 ) (1 ) ( )

2
1

u v u

u v u v

e e
e e e e

θ θ

θ θ θ θθ
+ +

+ + +

 −
 −

− − +  
 

FGM 1 (1 2 )(1 2 )u vθ+ − −  2 (1 2 )
1 (1 2 )(1 2 )

v
u v

θ
θ

−
−

+ − −
 

Gaussian 
{ }2 1 2 1 2 1 1

22

( ) ( ) 2 ( ) ( )1 exp
2(1 )1

u v u vθ θ

θθ

− − − − − Φ + Φ + Φ Φ
 

− −  
 { }1 1

2 1

1( ) ( )
1 ( ( ))

v u
u

θ θ
θ φ

− −
−Φ − Φ

− Φ
 

AMH 
2

3

1 (1 )(1 ) (2 )
[1 (1 )(1 )]
u v u v uv

u v
θ θ

θ
+ − − − − − −

− − −
 

2

( 1)
1 (1 )(1 ) (2 )

3 (1 )
1 (1 )(1 )

v v
u v u v uv

v
u v

θ θ θ
θ θ

θ
θ

+ − +
+ − − − − − −

−
−

− − −

 

*Φ: CDF of standard normal distribution, φ: PDF of standard normal distribution 
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Table 6.2  Continued 

Copula Copula density function, c(u,v;θ) Derivative, dlnc / du 

Gumbel 

1 1
1/ 1/ 2 1/( ln ) ( ln )exp( ) ( 1)u vA A A

uv

θ θ
θ θ θ θ

− −
− −− −

+ −  

where   ( ln ) ( ln )A u vθ θ= − + −  

1/ 1
1 1/ 1
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1 1 1 21 ( ln )
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u u A A

θ
θ θ
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θ θ
θ

−
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− + + − − −  + −  
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{ }1 1 1 1 1/ 2 1/

2 2 1/ 3

( 1) ( 1) ( 1) 1
(1 )

u v A A
u v A

θ θ θ θ

θ
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+
 

where   1 1( 1) ( 1)A u vθ θ− −= − + −  

1 1

2

1/ 1 1 1 1/ 1 1 1

2 1/ 2 1/

1 (1 2 )( 1)
( 1)
(1 ) ( 1) 2 3 ( 1)
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A u A u
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where   1/ 1/( 1) ( 1)A u vθ θ θ θ− −= − + −  
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1/ 1/ 1/

1 1 11 1 ( 1)
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6.4  Efficiency Improvements 

Confidence-based RBDO is rather computationally expensive because it requires 

NMCSψ×NMCSM calculations of the reliability output in Eq. (5.35).  Of course, the 

reliability analysis is required NMCSψ×(# of candidate distribution types) times 

practically; however it is still more computationally expensive than conventional RBDO.  

To alleviate the burden, two methods to improve efficiency of C-RBDO are used in this 

study. 

6.4.1  Two-Step Reliability Analysis 

For the C-RBDO process, accurate values of the reliability outputs are not 

necessary because C-RBDO uses the information whether or not a reliability output is 

larger than target reliability output.  This fact could be used to reduce computational cost.  

Assuming the reliability output would be calculated using the MCS method, the error of 

the reliability output is estimated with 95% confidence level as (Haldar and Mahadevan, 

2000)  

 (1 )% 200%
Tar
F

Tar
F

p
NMCS p

ε −
= ×

×
. (6.21) 

It is noted that the error means ε % of the target reliability output Tar
Fp  and the error is very 

small as Tar
Fp  is usually a small number.  By rearranging Eq. (6.21), an appropriate number 

of MCS samples is obtained as 

 
2

40000(1 )( %)
Tar
F

Tar
F

pNMCS
p

ε
ε

−
= . (6.22) 

In Eq. (6.22), it can be seen that NMCS is inversely proportional to ε2, while 

computational cost increases proportional to NMCS.  Hence, the cost could be reduced by 

controlling ε and calculating the reliability output in two steps. 
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First, set a relatively large error level εp for the preliminary test.  For example, 

15% could be a reasonable number for εp.  Then the number of MCS samples for 

preliminary test NMCSp becomes NMCS(15%) in Eq. (6.22).  If a calculated reliability 

output with NMCSp samples is out of the range [ (1 /100)]Tar
F Pp ε± , the calculated value can 

be used for confidence level estimation.  If the value is in the range, more MCS samples 

satisfying small error level of εa in Eq. (6.22) are used to accurately determine whether or 

not the calculated reliability is larger than target reliability output Tar
Fp .  For example, εa 

could be set to 3%.  Then the number of MCS samples for accurate test NMCSa becomes 

NMCS(3%) in Eq. (6.22).  It is noted that NMCSp=NMCS(15%) is only 4% of NMCSa 

=NMCS(3%) in Eq. (6.22).  If approximately 20% of NMCSψ×(# of candidate 

distribution types) falls into the range, the two-step method requires only 24% (=20% + 

4%) of the computational time of the previous method; this is significant improvement. 

6.4.2  Reusable Monte Carlo Simulation 

Monte Carlo simulation requires different sample sets to estimate reliability 

outputs of different input distribution types.  In conventional RBDO, reliability analysis 

using the MCS method would be performed for one input distribution type; however 

multiple distribution types are used in C-RBDO as it involves several candidate 

distribution types.  Hence, it would be quite efficient if the MCS is performed for some 

input distribution types and the results propagate to other distribution types without any 

more simulations. 

Important sampling could be applied to reuse an MCS result for other distribution 

types.  The main idea of the important sampling is shown as (Rubinstein and Kroese, 

2008) 
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where f(X) is the PDF of the input random variable X, g(X) is the PDF of the MCS 

samples, ΩF is the failure region of a constraint such that G(x) > 0, ( )
F

IΩ •  is an indicator 

function defined as 

 1, for
( )

0, otherwiseF

FIΩ

∈Ω
≡ 



x
x , (6.24) 

and w(X) = f(X) / g(X) is the weight function.  Here, it is noted that MCS samples do not 

follow the input distribution f(X).  The samples follow g(X), which is called “sampling 

distribution” in this study, and the constraint G is evaluated at the samples.  Then, the 

evaluated result can transfer to the reliability output when the input random variable 

follows f(X) using Eq. (6.23).  Hence, several reliability output values can be obtained for 

different f(X) just calculating the weight function w(X) at the MCS samples.  It is noted 

that the weight function is an analytical function, so it requires small computational time.  

The method in Eq. (6.23) is called “reusable MCS” in this study from now on. 

Reusable MCS has advantages and disadvantages.  The main advantage is the efficiency 

improvement explained earlier.  The disadvantage is loss of accuracy.  The original MCS, 

which is the case of f (X) = g(X) in Eq. (6.23), is insensitive to dimensionality of X.  

Moreover, the reliability result using original MCS is consistent when appropriate 

number of samples is used, as shown in Eq. (6.21).  The key factor that determines the 

accuracy of reusable MCS is the sampling distribution g(X).  If g(X) is appropriately 

selected, the loss of accuracy will be minimized.  Theoretically, reusable MCS can 

estimate the reliability output of two different distributions with one sampling 

distribution.  However, covering two different distributions of f1(X) and f2(X) could 
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make sampling distribution g(X) too wide, as shown in Figure 6.1(a).  Then, the result 

might be inaccurate or inconsistent because the samples generated from g(X), which 

cover the failure domain of f1(X) and f2(X), could be very small.  Consequently, reusable 

MCS is used for cases with different distribution types but the same statistical parameters 

(mean and variance) in this study.  As shown in Figure 6.1(b), sampling distribution is 

not very wide when it tries to cover distributions with different types but the same 

parameters. 

For the sampling distribution, its distribution type and parameters should be 

determined.  Normal distribution is a symmetric distribution with respect to the mean 

value of the input random variable.  Hence it can be an ideal distribution type for the 

sampling distribution because it can distribute MCS samples evenly on both sides of the 

mean point.  For the same reason, the Gaussian copula is selected to cover other copula 

types because it is symmetric to the correlation axis. 

Statistical parameters of the sampling distribution should be selected to cover 

candidate distribution types.  First, the mean value of the sampling distribution is selected 

as the same given mean value for the input random variable.  When they are different, 

sampling distribution may not appropriately cover the domain of the input random 

variable, especially for correlated variables as shown in Figure 6.2(a).  Given variances 

for input random variables are increased to cover all the candidate types; however, the 

ratio of increment in each dimension should be the same.  If they are different, there is 

chance that the sampling distribution may not cover some candidate distribution types 

especially when there are correlated variables as shown in Figure 6.2(b).  The increment 

of variance is selected as follows.  First, the 95% probability interval of each candidate 

distribution type in each dimension is calculated.  Then the variance of sampling 

distribution in each dimension is determined so the 95% probability interval of the 

sampling distribution can cover all the intervals of the candidate types.   
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(a) Covering distributions with different types and parameters 

 
 

 
(b) Covering distributions with different types but same parameters 

 

Figure 6.1  Coverage of Sampling Distribution 
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Among the increment in each dimension, the maximum ratio of increased variance to 

original is selected and applied to all dimensions to avoid the problem explained earlier 

(see Figure 6.2(b)).  In this way, the sampling distribution shown in Figure 6.2(c) could 

be determined.  Here, matching the “95%” probability interval may not be valid for the 

cases in which the target reliability output Tar
Fp  is larger than 2.275% (2 or less-sigma 

design).  When it is less, a larger probability interval should be used.  Same Kendall’s tau 

given for input random variables is also used for the sampling distribution because the 

coverage of the sampling distribution is already achieved by increasing variance. 

If reusable MCS is applied, the computational time due to number of candidate 

distribution types is minimized because it is replaced by analytic calculation.  Therefore, 

reusable MCS could provide substantial improvements in the efficiency of C-RBDO. 

 

 

 
(a) Different mean value 

Figure 6.2  Properties of Parameters for Sampling Distribution 
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(b) Different variance increment in each dimension 

 
 

 
(c) Same mean and same variance increment 

 
 

Figure 6.2  Continued 
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6.5  Numerical Example 

A 2-D mathematical and a 7-D engineering example have been tested to verify the 

performance of the developed C-RBDO.  The Iowa 2-D example is used to check the 

accuracy of the derived design sensitivity and explain the overall process of C-RBDO.  In 

addition, the effectiveness and convergence of C-RBDO have been tested using the Iowa 

2-D example.  Using the speed-reducer 7-D problem, the performance of C-RBDO in a 

high-dimensional problem has been tested. 

6.5.1  Iowa 2-D Example 

The C-RBDO formulation for the Iowa 2-D example is formulated as 

 2 2
1 2 1 2

2 2

( 10) ( 10)minimize      Cost( )
30 120

subject to     ( 2.275% | * ) 90% 1,2,3

, and
F ii

Tar Tar
P F i

L U

d d d d

F p CL i

+ − − +
= − −

= ≥ = =

≤ ≤ ∈ ∈

d

x

d d d d X 

. (6.25) 

where dL=[0  0]T, dU=[10  10]T, the feasible region is defined as Gi ≤ 0, and the three 

performance measures (constraints) are defined as 

 2
1 2

1

2 3
2 1 2 1 2

4
1 2 1 2

3 2
1 2

( ) 1
20

( ) 1 (0.9063 0.4226 6) (0.9063 0.4226 6)

0.6(0.9063 0.4226 6) ( 0.4226 0.9063 )
80( ) 1
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X X X X

G
X X

= −
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− + − − − +

= −
+ +

X

X

X

. (6.26) 

The contour of the cost function in Eq. (6.25) and the limit states (Gi = 0) of Eq. (6.26) 

are shown in Figure 6.3. 
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6.5.1.1 Design Sensitivity of Confidence Level 

In this section, the accuracy of the derived design sensitivity of the confidence 

level is verified.  As the design variable d in the Iowa 2-D example corresponds to the 

correlated random variable X, Eq. (6.9) is used to calculate the sensitivity.  In Eq. (6.9), 

the two additional terms of SM and CSψ  are the key parts of the sensitivity.  The same 10 

input data pairs used in Section 5.7.1 are used for the test of the design sensitivity, and 

their 1*x  and 2*x  are recalled here as 

 1 1

1 1

1 1

1 4

2 2

1 21

1

1

1

1

1.325 10 2.366 10
2.585 10 4.678 10
4.784 10 1.379 10
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 × 

, (6.27) 

Even though the SM and CSψ  are related to the input covariance matrix, its effect is 

limited since the probability of the input covariance matrix remains the same when the 

design changes.  Therefore, the effect of the input covariance matrix on the design and on 

the perturbed design are the same, whereas the change in the input mean vector is 

significant.  Moreover, for the same reason, the effect of the Kendall’s tau is limited as 

well.  As the FDM method is too expensive to calculate very accurate sensitivity to be 

used as a reference, simplification of the problem is required to check the accuracy of the 

sensitivity with affordable computation power and time.  In this sense, the input 

covariance matrix and the Kendall’s tau are fixed at the sample covariance matrix and 

sample Kendall’s tau.  As explained, this is a valid and necessary simplification for an 

accuracy check of the sensitivity with FDM.  It is noted that this simplification is for fast 

 

 



www.manaraa.com

 120 

convergence of the FDM sensitivity, not for the developed sensitivity method.  Therefore, 

the simplification is not applied to the actual C-RBDO process in the following section.  

In addition, the five candidate distribution types listed in Table 6.3 are used instead of the 

20 types that are used in Section 5.7.1. 

 

 

 

Figure 6.3  Cost Function Contour and Limit States in Iowa 2-D Example 
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Table 6.3  Candidate Input Distribution Types for Sensitivity Calculation 

No. Marginal type for X1 Marginal type for X2 Copula 

1 Extreme Extreme Gaussian 

2 Weibull Extreme Gaussian 

3 Extreme Weibull Gaussian 

4 Extreme Extreme A14 

5 Weibull Weibull Gaussian 

 

 

At the point d = [d1  d2]T = [5.0541  1.5918]T, the design sensitivity of the 

confidence level is calculated and compared with the FDM result.  The FDM result is 

carried out by perturbing d1 by 0.1% and using 2 million MCS samples for the input 

distribution parameter (NMCSψ = 2,000,000).  Because the FDM requires evaluations at 

both the original design and the perturbed design, a total of 4 million MCS samples are 

actually used to calculate the sensitivity using the FDM.  On the other hand, NMCSψ is 

set to 10,000 for the analytical sensitivity and needs only one evaluation.  Thus, only 

0.25% of the MCS samples for the FDM are used for the analytical sensitivity.  For both 

the analytical and FDM sensitivities, NMCSM is set to 1,000.  The accuracy check result 

is summarized in Table 6.4 and shows that the derived sensitivity agrees well with the 

FDM result.  It is also noted that the FDM sensitivity is still converging as NMCSψ 

increases.  Hence, the more accurate FDM sensitivity could be calculated with more 

MCS samples, and the discrepancy of 4.3% and 10.9% in Table 6.4 may be due to the 

inaccuracy of the FDM sensitivity.  The sensitivity for the third constraint is not 

considered because the design point d is so far from the third constraint that the 

sensitivity is meaningless for design optimization. 
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Table 6.4  Analytical Sensitivity and FDM Sensitivity 

Method Sensitivity for 
G1(X) Accuracy Sensitivity for 

G2(X) Accuracy 

Analytic 0.709119 104.3% -4.94209 110.9% 

FDM 0.679895  -4.45638  

 

 

6.5.1.2  Confidence-Based RBDO for Iowa 2-D Example 

Confidence-based RBDO is performed for the Iowa 2-D example in Eq. (6.25).  

Sequential quadratic programing (SQP) is used as the optimization method, and the 

design sensitivity in Eq. (6.9) is used.  It is noted that the assumption in Section 6.5.1.1 is 

not imposed for the design sensitivity.  For numerical efficiency, deterministic design 

optimization (DDO) is carried out first using the Iowa Reliability-Based Design 

Optimization (I-RBDO) code (Choi et al., 2012).  Then, the conventional RBDO is 

performed using the I-RBDO from the deterministic optimum with the most likely 

distribution type and parameters, which are obtained using the given input data.  Finally, 

the C-RBDO is performed at the conventional RBDO optimum.  In this way, the 

computational effort for design iterations of the C-RBDO process is minimized. 

Using the 10 data pairs in Eq. (6.27), C-RBDO has been performed.  In addition, 

the optimization is also conducted for the 20 data pairs used in Section 5.7.2 and recalled 

in Eq. (6.28).  Both NMCSψ and NMCSM are set to 10,000.  Assuming that the 

conventional RBDO optimum design is close to the C-RBDO optimum design, candidate 

input distribution types are determined at the conventional RBDO optimum using the 

given input data.  Following the same procedure in Section 5.7.1, the 20 candidate types 

listed in Table 6.5 and Table 6.6 are selected from among 392 (= 7×7×8) combinations at 

each of the conventional RBDO optimum designs using the data, means, and variances of 
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the data.  As a benchmark, the conventional RBDO optimum based on the benchmark 

input distribution, which is also used in Section 5.7 and recalled in Table 6.7, is used.  As 

explained in the Section 5.7, the 10 and 20 data pairs are drawn from the benchmark 

input distribution.  The results of C-RBDO and the benchmark are summarized in Table 

6.8. 
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Table 6.5  Candidate Input Distribution Types at the Conventional RBDO 
with 10 Data Pairs 

No. Marginal type for X1 Marginal type for X2 Copula 

1 Weibull Weibull Gaussian 

2 Extreme Weibull Gaussian 

3 Extreme Extreme Gaussian 

4 Extreme Extreme A12 

5 Weibull Weibull A12 

6 Weibull Extreme Gaussian 

7 Weibull Weibull A14 

8 Weibull Extreme A12 

9 Extreme Weibull A12 

10 Extreme Weibull A14 

11 Weibull Normal Gaussian 

12 Extreme Normal Gaussian 

13 Normal Weibull Gaussian 

14 Normal Weibull A12 

15 Extreme Extreme A14 

16 Normal Weibull A14 

17 Gamma Weibull Gaussian 

18 Weibull Extreme A14 

19 Gamma Weibull A12 

20 Gamma Weibull A14 
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Table 6.6  Candidate Input Distribution Types at the Conventional RBDO 
with 20 Data Pairs 

No. Marginal type for X1 Marginal type for X2 Copula 

1 Lognormal Gamma Clayton 

2 Normal Normal Clayton 

3 Gamma Gamma Clayton 

4 Weibull Weibull Clayton 

5 Gamma Normal Clayton 

6 Weibull Normal Clayton 

7 Extreme Weibull Clayton 

8 Normal Gamma Clayton 

9 Lognormal Normal Clayton 

10 Extreme Normal Clayton 

11 Lognormal Gamma A12 

12 Gamma Gamma A12 

13 Normal Weibull Clayton 

14 Normal Gamma A12 

15 Lognormal Lognormal A12 

16 Normal Normal A12 

17 Lognormal Lognormal Clayton 

18 Gamma Lognormal A12 

19 Gamma Weibull Clayton 

20 Gamma Normal A12 
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Table 6.7  Benchmark Input Distribution 

Random 
variable 

Marginal 
distribution Mean STDEV Copula Kendall’s 

tau 

X1 Normal d1 0.3 
Clayton 0.5 

X2 Normal d2 0.3 

 

Table 6.8  Optimum Design of Confidence-based RBDO and Benchmark 

Case Design 
iteration 

Conf. level 
eval. 

Optimum design 
Cost 

Confidence level (%) 

d1 d2 G1 G2 G3 

10 data pairs 8 34 5.1527 2.5260 −1.5082 89.1 89.8 98.9 

20 data pairs 7 8 5.2429 1.8835 −1.7626 91.0 91.3 100.0 

Benchmark - - 5.0541 1.5918 −1.8853 - - - 
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As shown in Table 6.8, the C-RBDO optimum designs satisfy the given target 

confidence level of 90% for both the 10 and 20 input data pairs cases.  Moreover, the C-

RBDO processes are converged under eight design iterations, which is efficient enough.  

This could be an indication that the provided design sensitivity is quite accurate.  Because 

G3 is far enough from both optimums, the confidence levels for G3 are almost 100% as 

shown in Table 6.8.  Comparing both C-RBDO optimum designs with the benchmark 

design, the optimum cost is increased.  For the 10 input data pairs case, 20% more cost 

(−1.8853 vs. −1.5082) is required to meet the target confidence level since significant 

uncertainty arises in the input probabilistic model due to the limited data.  Hence, a more 

conservative design is obtained in C-RBDO using higher optimum cost.  However, in the 

20 data pairs case, the optimum cost value increases only 6.5% compared to the 

benchmark (−1.8853 vs. −1.7626) as it has more data.  That is, less uncertainty is induced 

in the input probabilistic model, so a less conservative design is obtained than for the 10 

data pairs case to satisfy the target confidence level. 

To understand how conservative the C-RBDO optimum designs are, a 

conventional reliability analysis is performed at each of the C-RBDO optimums using the 

benchmark distribution (correct distribution) in Table 6.7.  The calculated results are 

summarized in Table 6.9, and the optimum designs are graphically shown in Figure 6.4 

as well.  As shown in Table 6.9, the optimum design of the 10 data pairs case has 

probabilities of failure of 0.0022% and 0.0241% for G1 and G2, respectively, which are 

under 1/100 (0.0241/2.2791) of the result of the benchmark case.  However, in the 20 

data pairs case, the probabilities of failure are only 0.2190% and 0.3307% for G1 and G2, 

respectively, which are approximately 1/10 (0.3307/2.2791) of the result of the 

benchmark.  Therefore, it can be concluded that the number of data is a crucial factor in 

the uncertainty in the input probabilistic model, especially when the data is limited. 

The trend is also shown clearly in Figure 6.4.  The deterministic design optimum 

usually has a probability of failure around 50%.  To reduce the probability of failure, the 
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conventional RBDO optimum with the given benchmark distribution is pushed inside the 

feasible region.  It can be seen that the C-RBDO optimums are further pushed inside.  

However, the optimum of the 20 data pairs case is much closer to the benchmark 

optimum than that of the 10 data pairs case.  Hence, it is confirmed that the 20 data pairs 

induce much less uncertainty than the 10 data pairs. 

 

Table 6.9  Conventional Reliability Results 

Case 
Optimum design 

Cost 
Probability of failure (%) 

d1 d2 G1 G2 G3 

10 data pairs 5.1527 2.5260 −1.5082 0.0022 0.0241 0.0 

20 data pairs 5.2429 1.8835 −1.7626 0.2190 0.3307 0.0 

Benchmark 5.0541 1.5918 −1.8853 2.2912 2.2791 0.0 
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Figure 6.4  Optimum Designs in Iowa 2-D Example 
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pairs are summarized in Table 6.10.  The same procedure used in Section 6.5.1.2 has 

been followed for the large data pairs cases.  First, the initial design is set to DDO as 

DDO is the same regardless of the number of data pairs.  Conventional RBDO is 

performed for each case with the most likely distribution types and the parameters listed 

in Table 6.10.  Then, the 20 candidate distribution types are determined at the 

conventional RBDO optimum, and C-RBDO is performed from the conventional RBDO 

optimum. 

 

Table 6.10  Parameters Calculated from Data in Large Data Cases 

Case 
X1 X2 Kendall’s 

tau Mean STDEV Mean STDEV 

50 Data Pairs 4.957 0.303 4.950 0.286 0.564 

100 Data Pairs 5.029 0.302 5.031 0.290 0.458 

200 Data Pairs 4.974 0.287 4.984 0.287 0.485 

500 Data Pairs 4.996 0.285 4.990 0.284 0.496 

1000 Data Pairs 4.990 0.287 5.003 0.294 0.507 

Benchmark 5.0 0.3 5.0 0.3 0.5 

 

 

The obtained C-RBDO optimums as well as 10 and 20 data pairs and the 

benchmark optimums in Section 6.5.1.2 are listed in Table 6.11.  Target confidence level 
TarCL  is set to 90% for all cases, and 95% and 97.5% of the target confidence level are 

used for the 500 and 1000 data pairs cases.  The seventh column of Table 6.11 shows the 

distance from each C-RBDO optimum to the benchmark optimum.  Overall, the distance 

decreases as more data are provided in the C-RBDO procedure.  Hence, it can be seen 
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that the C-RBDO optimum converges to the benchmark optimum as the number of data 

increases.  However, it is not always true, as shown in the cases of the 50, 100, and 200 

data pairs for the 90% target confidence level.  The C-RBDO optimum of the 50 data 

pairs case is closer to the benchmark optimum than the 100 data pairs case and equally 

close with the 200 data pairs case.  The reason is that the 50 data pairs case has a 

relatively larger sample Kendall’s tau (0.564) than the two other cases (0.458 and 0.485), 

as shown in Table 6.10.  Large Kendall’s tau allows an optimum to be close to the limit 

state of the second constraint G2, which is less conservative.  Hence, the optimum of the 

50 data pairs case has a distance shorter than or equal to the benchmark optimum even 

though it has smaller data. The statistical information contained in data affects the 

conservativeness of the C-RBDO optimum, and consequently it may expedite or prolong 

the convergence of C-RBDO. 

The C-RBDO optimums for the 90% target confidence level are graphically 

shown in Figure 6.5.  It is evident that the optimums are gathered near the benchmark 

optimum when more than 50 data pairs are given.  To see the convergence feature in 

detail, a small region near the benchmark optimum in Figure 6.5 is magnified in Figure 

6.6.  In the magnified plot, it is shown that optimum closer to the benchmark optimum is 

obtained as more data are provided except in the case of 50 data pairs, as addressed 

earlier.  The results for the 95% and 97.5% target confidence levels are shown in Figure 

6.6 as well.  For the 500 data pairs case, increasing the target confidence level makes the 

optimums move upward, and the design becomes more conservative and requires more 

cost.  However, they are positioned a similar distance from the benchmark optimum, 

which indicates that increasing the target confidence level does not affect the 

convergence of the optimums in this case.  On the contrary, the C-RBDO optimums for 

1000 data pairs are in-lined to the direction of the benchmark optimum.  In this case, 

controlling the target confidence level expedites the convergence.  Hence, it is evident 

that target confidence level is not a consistent parameter that affects the convergence of 
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C-RBDO optimums.  Again, it is verified that the C-RBDO optimums converge to the 

benchmark optimum as number of data increases in Figures 6.5 and 6.6. 

 

 

 

Figure 6.5  C-RBDO Optimum Designs for 90% CLTar 
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Figure 6.6  C-RBDO Optimum Designs near Benchmark Optimum 
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Table 6.11  Optimum Design of C-RBDO for Different Numbers of Data Pairs 

Case CLTar Design 
Iter. 

CL 
Eval. 

Optimum design 
Distance Cost 

Confidence level (%) 
d1 d2 G1 G2 G3 

10 data pairs 90% 8 34 5.1527 2.5260 0.939 −1.5082 89.1 89.8 98.9 
20 data pairs 90% 6 8 5.2429 1.8835 0.347 −1.7625 91.0 91.3 100.0 
50 data pairs 90% 2 4 5.0581 1.6506 0.059 −1.8591 89.8 89.5 100.0 
100 data pairs 90% 4 8 5.0413 1.6790 0.088 −1.8465 89.4 90.0 100.0 
200 data pairs 90% 4 6 5.0793 1.6449 0.059 −1.8617 90.3 90.0 100.0 

500 data pairs 
90% 3 5 5.0344 1.5924 0.020 −1.8850 89.6 90.0 100.0 
95% 6 10 5.0385 1.6025 0.019 −1.8805 95.5 95.2 100.0 

97.5% 4 6 5.0421 1.6098 0.022 −1.8772 97.4 97.0 100.0 

1000 data 
pairs 

90% 3 5 5.0577 1.5979 0.007 −1.8826 89.5 91.3 100.0 
95% 3 5 5.0599 1.6018 0.012 −1.8808 94.1 94.3 100.0 

97.5% 4 5 5.0643 1.6103 0.021 −1.8770 97.7 97.6 100.0 
Benchmark - - - 5.0541 1.5918 0.0 −1.8853 - - - 
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6.5.2  Speed-Reducer 7-D Example 

The speed-reducer example is a 7-D engineering problem that is frequently used 

for development of a design optimization method.  The original problem is for 

deterministic design, and it has been changed for C-RBDO.  A C-RBDO problem is 

formulated for the speed-reducer 7-D example using cost function (Golinski, 1970) and 

probabilistic constraints as  

 2 2
1 2 3 3

2 2 3 3
1 6 7 6 7

2 2
4 6 5 7

7 7

minimize      Cost( ) 0.7854 (3.3333 14.9334 43.0934)

1.508 ( ) 7.477( )

0.7854( )

subject to     ( 2.275% | * ) 1, ,11

, and
F ii

Tar Tar
P F i

L U

d d d d
d d d d d

d d d d
F p CL i

= + −

− + + +

+ +

= ≥ =

≤ ≤ ∈ ∈

d

x

d d d d X



 

. (6.29) 

where dL=[2.0  0.5  12  6.8  6.8  2.4  4.8]T, dU=[4.0  0.9  32  8.8  8.8  4.4  5.8]T, the 

feasible region is defined as Gi ≤ 0, and the eleven constraints are defined as (Golinski, 

1970) 
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The constraints include limitations on the bending stress of gear tooth, surface stress, 

transverse deflection of shafts 1 and 2 due to transmitted force, and stresses in shafts 1 
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and 2.  Input random variables of the speed-reducer problem represent the face width 

(X1), module of teeth (X2), number of teeth on pinion (X3), length of shaft 1 and 2 

between bearings (X4, X5), and diameter of shaft 1 and 2 (X6, X7).  All random variables 

are assumed to be independent in this example.  A schematic of the speed reducer is 

shown in Figure 6.7.  

A benchmark distribution in Table 6.12 is used as an exact input probabilistic 

model, and two sets of input data are drawn from the benchmark distribution as listed in 

Table 6.13 and Table 6.14.  In this example, different random variables have different 

numbers of data.  X1 and X2 have 20 data, X3 to X5 have 30 data, and X6 and X7 have 15 

data.  However, the two sets have the same numbers of data.  In the bottom two rows of 

Table 6.13 and Table 6.14, sample means and standard deviations (means and standard 

deviations calculated using data) are shown.  The ratio of the sample mean (or standard 

deviation) to the benchmark mean (or standard deviation) is shown as well.  It can be 

seen that sample means are estimated very accurately as their ratios are in the range of 

99.1% to 100.3% of the benchmark mean.  On the contrary, the sample standard 

deviations are in the range of 67.3% to 107.3% of the benchmark standard deviations.  

That is, the data could not estimate standard deviations accurately.  In particular, small 

standard deviations could yield not-enough-conservativeness as they are underestimating 

input randomness in the RBDO process.  The small standard deviations are a typical 

example of uncertainty in the input probabilistic model due to limited data.  C-RBDO can 

secure appropriate conservativeness by considering the uncertainty in the input 

probabilistic model. 
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Figure 6.7  Schematic of Speed-Reducer 

Source:  Lu, S., and Kim, H. M., "A Regularized Inexact Penalty Decomposition 
Algorithm for Multidisciplinary Design Optimization Problems with Complementarity 
Constraints," Journal of Mechanical Design, Vol. 132, No. 4, pp. 041005-041005, 
2010. 

 

 

Table 6.12  Benchmark Input Distribution 

RV Type Mean STDEV 

X1 

Normal 

3.0 0.06 

X2 0.7 0.015 

X3 22 0.4 

X4 7.8 0.15 

X5 7.8 0.15 

X6 3.4 0.06 

X7 5.3 0.1 
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Table 6.13  Input Data Set 1 

No. X1 X2 X3 X4 X5 X6 X7 
1 2.9162 0.7063 21.3495 7.5622 7.8251 3.3778 5.2981 
2 2.9759 0.6929 21.9324 7.5080 7.6454 3.4206 5.3161 
3 2.9777 0.7103 22.1643 7.9300 7.7038 3.3332 5.2435 
4 3.0407 0.7113 22.0967 7.8282 7.9806 3.3511 5.3331 
5 3.0067 0.6830 21.6775 7.5644 7.8135 3.4148 5.1677 
6 2.9946 0.7026 22.0426 7.8667 7.8068 3.4065 5.2387 
7 3.0908 0.6932 21.4084 7.4867 7.7151 3.4452 5.3234 
8 3.0106 0.7196 22.6049 7.7064 7.9453 3.3940 5.2609 
9 2.9834 0.7029 21.7892 7.9942 8.1287 3.4585 5.4177 
10 2.9421 0.7023 21.9633 7.6974 7.8279 3.4162 5.3472 
11 2.9138 0.7151 21.8453 7.7979 7.8020 3.3530 5.4161 
12 2.9821 0.7190 22.2193 7.8859 7.7373 3.4331 5.1409 
13 2.9055 0.6842 21.8602 7.9514 7.7184 3.3354 5.2672 
14 2.9826 0.7104 22.4780 7.8078 7.5923 3.4398 5.3350 
15 3.0099 0.6604 21.6022 7.9582 7.6216 3.3964 5.2535 
16 2.9758 0.6898 21.5932 7.8407 7.8276   
17 3.0347 0.6917 22.3571 7.8958 7.8820   
18 2.9424 0.6839 21.5220 7.9844 8.0628   
19 3.0631 0.7126 22.0974 7.8843 7.9937   
20 2.9442 0.7057 22.2700 7.8570 8.0595   
21   22.4971 7.6956 7.6727   
22   21.3538 8.0374 7.8898   
23   21.6968 8.0829 7.6195   
24   22.1801 7.7731 7.9242   
25   22.2690 7.8197 7.6111   
26   22.4848 7.9012 7.5856   
27   21.6872 7.8424 8.0436   
28   20.8836 7.7129 7.7266   
29   22.4629 7.6647 7.6988   
30   22.1971 7.8187 7.7650   

Mean 2.9846 
(99.5%) 

0.6999 
(100.0%) 

21.9529 
(99.8%) 

7.8119 
(100.2%) 

7.8075 
(100.1%) 

3.3984 
(100.0%) 

5.2906 
(99.8%) 

STDEV 0.0494 
(82.3%) 

0.0149 
(99.3%) 

0.4169 
(104.2%) 

0.1517 
(101.1%) 

0.1553 
(103.5%) 

0.0404 
(67.3%) 

0.0783 
(78.3%) 

 

 

 



www.manaraa.com

 139 

Table 6.14  Input Data Set 2 

No. X1 X2 X3 X4 X5 X6 X7 
1 2.9203 0.7025 22.0096 7.8025 7.9095 3.3053 5.2558 
2 3.0313 0.6938 22.3822 7.6630 7.6668 3.4074 5.2584 
3 2.9503 0.6837 21.8453 7.9339 7.6510 3.3389 5.3148 
4 3.0280 0.7033 21.9388 7.8259 7.8232 3.2893 5.2958 
5 3.0461 0.6740 22.2043 7.8492 7.9829 3.3938 5.3992 
6 3.0064 0.6925 22.4586 7.5509 7.9383 3.4217 5.4540 
7 3.0507 0.6974 21.6787 7.6625 7.7680 3.4144 5.2811 
8 3.0657 0.7174 21.7482 7.7282 7.5703 3.4106 5.3023 
9 3.0117 0.7123 21.8987 7.8715 7.7142 3.2963 5.2589 
10 3.0412 0.7021 21.8233 7.7388 7.8396 3.3547 5.2006 
11 2.9139 0.7327 22.1498 7.8177 7.6579 3.4768 5.3028 
12 2.9632 0.7284 21.6523 7.8034 7.7336 3.4475 5.2508 
13 2.9368 0.6807 21.0246 7.8330 7.7705 3.4571 5.2411 
14 3.0484 0.6971 22.4264 7.5537 7.4158 3.4030 5.1304 
15 3.0993 0.6891 22.1151 7.9493 7.9377 3.4129 5.2804 
16 3.0113 0.7011 22.0429 7.8429 7.7072   
17 3.0981 0.6946 21.9851 7.8243 7.9347   
18 3.0369 0.6926 21.5144 7.6097 7.7409   
19 2.9672 0.6931 22.1310 7.5276 7.7911   
20 2.9641 0.6685 22.0537 7.5023 7.9542   
21   21.9131 7.8946 8.1346   
22   22.5774 7.7433 7.9788   
23   22.6514 7.6291 7.5750   
24   21.7253 7.5455 7.8447   
25   21.7726 7.6574 7.9804   
26   22.4377 7.5837 7.6524   
27   21.2991 7.7287 7.7889   
28   21.8885 7.8490 7.6391   
29   21.8662 7.7392 7.5552   
30   21.8235 7.7104 7.8646   

Mean 3.0095 
(100.3%) 

0.6978 
(99.7%) 

21.9679 
(99.9%) 

7.7324 
(99.1%) 

7.7840 
(99.8%) 

3.3887 
(99.7%) 

5.2817 
(99.7%) 

STDEV 0.0553 
(92.2%) 

0.0161 
(107.3%) 

0.3614 
(90.4%) 

0.1281 
(85.4%) 

0.1605 
(107.0%) 

0.0587 
(97.8%) 

0.0753 
(75.3%) 
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Similar to the Iowa 2-D example in Section 6.5.1, the DDO optimum is obtained 

first using the I-RBDO code.  Then conventional RBDO is performed using the most 

likely distribution types chosen at the DDO optimum, the parameters shown at the bottom 

rows of Table 6.13 and Table 6.14, and the I-RBDO code.  The most likely distributions 

for input data set 1 are lognormal, extreme, Weibull, Weibull, Gumbel, Weibull, and 

normal for X1 to X7, respectively.  The distributions for input data set 2 are normal, 

lognormal, normal, normal, normal, Weibull, and lornormal for X1 to X7, respectively.  

After a conventional RBDO optimum is obtained, candidate distribution types for C-

RBDO are chosen.  Here, a different method than the one for the Iowa 2-D example (20 

most likely types) is required because there are 823,543 (=77) possible combinations if 

seven marginal distribution types are considered for each random variable.  The 20 most 

likely types among the 823,543 combinations have the same probability.  That means 

they are essentially the same distribution type.  Therefore, it may not be appropriate to 

consider them as they cannot provide enough flexibility of input distribution types to C-

RBDO. 

To determine a reasonable number of candidate distribution types, the 

probabilities of 823,543 combinations are calculated first using the parameters in Table 

6.13 and Table 6.14 at the conventional RBDO optimums.  Then the probabilities when 

Xi follows a certain marginal distribution type, regardless of other random variables, are 

summed.  For example, among the 823,543 probabilities, the probabilities when X1 

follows normal distribution are summed.  Hence, there are total 49 cumulative 

probabilities (seven random variables by seven marginal distribution types), as shown in 

Table 6.15 and Table 6.16.  The distribution types for each random variable could be 

categorized into three groups according to their cumulative probabilities.  For example, 

marginal distribution types for X7 in input data set 1 are categorized into three groups.  

The first group contains normal, lognormal, and gamma, which have a cumulative 

probability around 24%.  The second group of Weibull and extreme has approximately 
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10% cumulative probability.  The last group has Gumbel and extreme type-II, and they 

have small cumulative probability. 

 

Table 6.15  Cumulative Probability of Input Distribution Type for Input Data Set 1 

Type X1 X2 X3 X4 X5 X6 X7 

Normal 23.4% 7.8% 14.1% 16.3% 13.2% 16.8% 24.5% 

Lognorm. 24.1% 6.6% 11.6% 14.1% 14.6% 16.4% 24.1% 

Weibull 0.6% 38.5% 32.9% 29.7% 0.1% 23.0% 12.1% 

Gumbel 14.6% 0.0% 0.0% 0.0% 30.2% 2.6% 2.6% 

Gamma 23.9% 7.0% 12.4% 14.8% 14.2% 16.6% 24.2% 

Extreme 0.4% 40.1% 29.0% 25.1% 0.0% 22.4% 10.6% 

Ext. II 12.9% 0.0% 0.0% 0.0% 27.6% 2.2% 1.9% 

 

Table 6.16  Cumulative Probability of Input Distribution Type for Input Data Set 2 

Type X1 X2 X3 X4 X5 X6 X7 

Normal 22.4% 23.5% 31.8% 22.6% 32.3% 15.3% 27.5% 

Lognorm. 21.8% 25.6% 28.6% 21.4% 31.4% 14.5% 28.6% 

Weibull 15.6% 0.2% 6.3% 18.0% 2.6% 26.9% 0.3% 

Gumbel 2.4% 14.7% 0.0% 0.7% 0.3% 1.3% 8.5% 

Gamma 22.0% 24.9% 29.7% 21.8% 31.8% 14.7% 28.3% 

Extreme 13.9% 0.1% 3.7% 15.1% 1.5% 26.4% 0.2% 

Ext. II 1.9% 11.0% 0.0% 0.4% 0.1% 0.9% 6.7% 
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Marginal PDFs in each group for X7 in set 1 are graphically shown in Figure 6.8.  

It is evident that the PDFs in the same group have very close shape.  Hence, it can be 

seen that the similar cumulative probability indicates similar shapes of PDF in each 

group.  Therefore, it is not necessary to consider all marginal distribution types in each 

group for the candidate distribution types.  It would be better to consider one distribution 

type in each group because it can provide the same flexibility of distribution type to the 

C-RBDO process using a smaller number of candidate distribution types.  In this 

example, three groups are determined according to the cumulative probabilities of each 

marginal distribution type.  Then, the distribution that shows the largest cumulative 

probability in each group is selected as the representative of the group.  If all the 

cumulative probabilities in a group are larger than 28.6%, which is twice the average 

cumulative probability (200% / 7), the group is treated as the dominant group, and only 

one marginal distribution in the dominant group is used for the corresponding random 

variable.  For example, X2 in the input data set 1 has only extreme distribution as its 

marginal candidate because the group of Weibull and extreme distributions has 

cumulative probability larger than 28.6%.  So the group is treated as the dominant group, 

and only extreme distribution is used as the marginal candidate.  If there is no group 

whose cumulative probabilities are larger than 28.6%, two groups are selected, and one 

distribution that has the largest cumulative probability in each group is selected.  The 

group with lowest average cumulative probability is not considered in this example 

because it has small probability and therefore a small effect on the C-RBDO process.  

Following this procedure, 32 (=25) candidate distribution types are selected for both input 

data sets.  The selected marginal distribution types are marked with bold font in Table 

6.15 and Table 6.16. 
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(a) PDFs of the first group 

 

 
(b) PDFs of the second group 

Figure 6.8  PDFs of Groups of Marginal Distribution for X7 in Input Data Set 1 
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(c) PDFs of the third group 

 

Figure 6.8  Continued 
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and tend to increase as more conservativeness is required.  The reason is that constraints 

G1 to G6 are for strength (stress and deflection) of the system.  More material will 

increase the strength, so d2 to d7 tend to increase as more conservative design is required.  

The percentage under each cost value shows an increment ratio from the cost at the DDO 

optimum design.  From DDO to conventional RBDO optimums, 12.5% to 13.9% of the 

cost is increased to obtain a more reliable design considering input randomness in the 

data.  Then, 18.4% to 22.1% more cost is necessary to secure a 97.5% confidence level of 

reliability output.  Hence, 5.9% to 8.2% more cost from conventional RBDO is required 

to secure appropriate safety considering the uncertainty in the input probabilistic model 

due to the limited data. 

In Table 6.18, confidence levels at conventional RBDO and C-RBDO optimum 

designs are summarized.  Confidence levels of active constraints are shown, and the other 

constraints of G3, G4, G7, G8, and G9 have 100% confidence level of the reliability 

output.  At the conventional RBDO optimum designs, very low confidence levels are 

found (see underlined values).  The main reason is that the conventional RBDO considers 

only one input distribution type.  Sometimes different distribution types could result in 

very different reliability output even though the same input distribution parameters are 

given.  For this reason, the conventional RBDO could not secure even a moderate 

confidence level.  At C-RBDO optimum designs, the target confidence level is met.  That 

is, C-RBDO is successfully converged to the correct optimum designs. 

To check the conservativeness of the optimum designs, reliability analysis is 

performed at the optimum designs using the benchmark distribution shown in Table 6.12.  

The result of the reliability analysis is summarized in Table 6.19 for active constraints.  

Other constraints show negligible reliability output.  At the conventional RBDO optimum 

designs, a 2.275% target reliability output is not satisfied.  As explained earlier, small 

sample standard deviations are estimated in both data sets, and thus input randomness is 

underestimated.  Hence, reliability output values larger than 2.275% are estimated at the 
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conventional RBDO optimum deigns when the benchmark distribution is applied.  In the 

case of input data set 1, all C-RBDO optimum designs satisfy 2.275% target reliability 

output.  Even though input randomness is underestimated, safe designs are successfully 

found considering the uncertainty in the input probabilistic model due to limited data.  On 

the other hand, in set 2, the C-RBDO optimum with 90% target confidence level does not 

satisfy 2.275% in G6.  This indicates that the target confidence level should be set 

reasonably high so that the underestimated input randomness could be compensated by 

considering the uncertainty in the input probabilistic model.  However, 2.6872% at 90% 

C-RBDO optimum is very close to 2.275% target reliability compared to 6.8555% at 

conventional RBDO optimum design in G6.  Hence, by considering uncertainty in the 

input probabilistic model, appropriate conservativeness is almost reached.  C-RBDO 

optimum designs for set 2 with 95% and 97.5% target confidence levels satisfy target 

reliability output in all constraints. 

In this example, it is shown that the C-RBDO formulation successfully finds its 

optimum design in a multi-dimensional engineering problem.  It is also well shown that 

the limited data may cause small sample standard deviations so that input randomness 

could be underestimated.  Then, conventional RBDO cannot find safe design, and even 

C-RBDO with a certain target confidence level may not secure target reliability output.  

Hence, in practical engineering problems, a reasonably high target confidence level, such 

as 97.5%, is recommended for C-RBDO.  In practical situations, engineers will not have 

the benefit of the benchmark distribution (i.e., exact input distribution).  Hence, it is 

impossible to estimate how much conservativeness the obtained optimum design yields.  

Therefore, a reasonably high target confidence level is necessary in practical engineering 

problems when only limited data are provided. 
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Table 6.17  Optimum Designs of Speed-Reducer 7-D Example 

Case Design 
iter. 

Conf. 
eval. 

Optimum design 
Cost 

d1 d2 d3 d4 d5 d6 d7 

DDO - - 4 0.6771 14.7222 6.9282 7.7159 3.3521 5.2872 2676 

Set 1 

RBDO - - 4 0.7051 15.3831 7.4649 8.1872 3.4520 5.4437 3047 
(13.9%) 

C-RBDO 
(CLTar = 90%) 11 44 3.9998 0.7140 15.4839 7.5992 8.3907 3.4848 5.5327 3180 

(18.8%) 
C-RBDO 

(CLTar = 95%) 5 7 4 0.7175 15.4916 7.6438 8.4571 3.4968 5.5643 3225 
(20.5%) 

C-RBDO 
(CLTar = 97.5%) 6 9 3.9971 0.7211 15.5014 7.6938 8.5131 3.5102 5.5922 3267 

(22.1%) 

Set 2 

RBDO - - 4 0.7043 15.1619 7.4452 8.2412 3.4978 5.4358 3011 
(12.5%) 

C-RBDO 
(CLTar = 90%) 4 6 4 0.7098 15.2543 7.6341 8.3855 3.5434 5.4799 3099 

(15.8%) 
C-RBDO 

(CLTar = 95%) 8 25 4 0.7134 15.2516 7.8013 8.4371 3.5636 5.5017 3138 
(17.3%) 

C-RBDO 
(CLTar = 
97.5%) 

8 21 4 0.7168 15.2458 7.7626 8.4795 3.5826 5.5173 3168 
(18.4%) 
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Table 6.18  Confidence Level at Optimum Designs 

Case 
Confidence level 

G1 G2 G5 G6 G10 G11 

Set 1 

RBDO 42.71% 41.27% 62.82% 38.47% 61.43% 33.35% 

C-RBDO 
(CLTar = 90%) 89.63% 90.31% 90.98% 89.32% 92.05% 90.32% 

C-RBDO 
(CLTar = 95%) 95.00% 94.98% 95.15% 95.00% 94.92% 95.39% 

C-RBDO 
(CLTar = 97.5%) 97.50% 97.60% 97.42% 97.58% 97.65% 97.46% 

Set 2 

RBDO 58.76% 50.59% 61.83% 60.65% 29.49% 40.77% 

C-RBDO 
(CLTar = 90%) 89.84% 89.89% 90.11% 89.77% 89.86% 89.69% 

C-RBDO 
(CLTar = 95%) 94.94% 95.02% 94.92% 94.93% 99.76% 94.91% 

C-RBDO 
(CLTar = 97.5%) 97.37% 97.39% 97.53% 97.06% 97.98% 97.39% 
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Table 6.19  Reliability Analysis Result at Optimum Designs 
with Benchmark Distribution 

Case 
Probability of failure (%) 

G1 G2 G5 G6 G10 G11 

Set 1 

RBDO 0.9475 0.8314 4.7818 5.8669 1.3552 5.4166 

C-RBDO 
(CLTar = 90%) 0.1581 0.1598 1.3475 0.7083 0.3474 1.4732 

C-RBDO 
(CLTar = 95%) 0.0769 0.0937 0.7914 0.2872 0.2202 0.9568 

C-RBDO 
(CLTar = 97.5%) 0.0416 0.0532 0.4218 0.1210 0.1243 0.6584 

Set 2 

RBDO 2.1393 2.6235 0.7542 6.8555 4.3886 2.6138 

C-RBDO 
(CLTar = 90%) 0.7322 0.9630 0.0730 2.6872 0.8441 0.7051 

C-RBDO 
(CLTar = 95%) 0.4131 0.6557 0.0213 1.6117 0.0730 0.4592 

C-RBDO 
(CLTar = 97.5%) 0.2407 0.4637 0.0059 1.0739 0.2619 0.3092 
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CHAPTER 7 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

In this chapter, the conclusions of this study and future recommendations are 

presented.  Section 7.1 presents conclusions regarding the developed variable screening 

method and the confidence-based method for reliability-based design optimization 

(RBDO).  In Section 7.2, possible improvements are recommended for the future. 

7.1  Conclusions 

A new efficient and effective variable screening method for RBDO is proposed in 

this study.  For the proposed methods, the output variance is used as a measure that can 

identify important design variables.  Thus, a partial output variance based on the 

univariate dimension reduction method (DRM) is proposed to approximate the output 

variance efficiently and to identify the design variables that affect output variance more 

significantly than others.  The univariate DRM and partial output variance only require 

multiple 1-D surrogate models, which is much more efficient than the full-dimensional 

surrogate models.  Hence, the proposed method has great merit in efficiency as well as 

effectiveness.  To reduce computational time and maintain a user-specified statistical 

error level, hypothesis testing is used in the variable screening process.  Also, a required 

minimum number of samples for calculating the correct output variance is proposed using 

the user-specified error level.  In addition, the quadratic interpolation method is tailored 

to be applied for efficient partial output variance calculation. 

Two analytical examples and a 44-D industrial example are used to verify the 

performance of the proposed variable screening method.  Through the analytical 

examples, it is shown that at least quadratic approximation is required for the 1-D 

surrogate model and that partial output variance is a good measure that successfully 

identifies important variables.  In the industrial example, 14 design variables out of 44 are 

selected by considering the output variances of 11 constraints.  For comparison, another 
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14 design variables selected based on experience are used.  In addition, 18 design 

variables are selected by adding four design variables, which affect the objective function 

significantly while not affecting the output variances much, to the 14 design variables 

previously selected with the proposed method.  The selection based on experience shows 

a 7.6% reduced cost value, whereas the target probability of failure is violated by 77%.  

However, selection by the proposed method shows only a 12.3% disagreement of target 

value and a 3.6% reduced cost value.  Moreover, the selection of 18 design variables 

shows 11.7% target disagreement as well as 9.4% reduced cost value.  Therefore, the 

performance of the proposed variable screening method is verified. 

In this study, the confidence level of the reliability output, which is the probability 

of failure, is estimated to quantify the uncertainty in the input probability model due to 

limited input data.  The probability of the reliability output is decomposed into successive 

conditional probabilities of input distribution type and parameters.  Then, the conditional 

probabilities are obtained using the Bayesian approach under reasonable assumptions.  As 

the probability at a target reliability output (target probability of failure) is the confidence 

level for the target value, the confidence level of the reliability output is directly available 

and can be used for new probabilistic constraints in the confidence-based RBDO (C-

RBDO) formulation.  Consequently, the C-RBDO formulation can provide an optimum 

design that satisfies the target confidence level at the target reliability output.  This is 

beneficial because appropriate conservativeness, which is necessary when only limited 

data are available, is included in the optimum design.  The confidence levels at the 

selected design point, which is the conventional RBDO optimum design using a 

benchmark distribution, is computed for different numbers of data.  As the results show, a 

greater confidence level is required when less data is provided, so it is necessary to adopt 

the developed C-RBDO. 

For efficient and accurate evaluation of confidence-based RBDO, the analytical 

design sensitivity of the confidence level is derived.  Compared to the finite difference 
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method (FDM) sensitivity, the derived sensitivity shows accurate results in the numerical 

example.  At the same time, it uses only 0.25% of the Monte Carlo simulation (MCS) 

samples that are used by the FDM, so it is efficient as well.  To improve the efficiency of 

C-RBDO, two-step reliability analysis and reusable MCS are suggested.  Using the 

developed design sensitivity and efficiency improvement methods, C-RBDO is 

performed for different numbers of data.  Smooth convergence of the optimization 

process again verifies that the provided design sensitivity is accurate.  At the obtained 

optimum designs, the target confidence level at the target reliability output is met for 

active constraints.  Using the benchmark distribution, conventional RBDO is performed 

at the C-RBDO optimums.  The result shows that the optimum design is more 

conservative as a smaller amount of data is provided.  In addition, as more data are 

provided, the optimum design approaches the conventional RBDO optimum with the 

benchmark input distribution.  Therefore, it can be seen that C-RBDO produces an 

appropriately conservative design according to the given input data.  In addition, by using 

a 7-D engineering example, it is confirmed that C-RBDO finds optimum designs with 

reasonable conservativeness, even for high-dimensional problems. 

7.2  Future Recommendations 

The developed variable screening method selects important variables using the 

partial output variances, and hypothesis testing determines which variable has larger 

partial output variance than other variables.  In the developed method, one variable will 

be selected by hypothesis testing even though two variables have very similar partial 

output variances.  In the future, partial output skewness could be studied as a measure to 

estimate the importance of variables.  If two random variables have very close partial 

output variances, the effect of partial output skewness on the probability of failure could 

be significant.  Hence, the variable screening could calculate the partial output variances 

first and then decide which variables are important.  If the hypothesis testing indicates 
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that some partial output variances are statistically similar, the partial output skewness 

could decide which variable affects the probability of failure more significantly.  Then 

the variable screening with two measures of partial output variances and skewness could 

be more effective than the present method.  

The methodology of the C-RBDO has been developed, and its performance is 

verified as well in this study.  To make the method more widely used, more tests could be 

performed to find potential applications.  Adopting surrogate model methods could be a 

great leap toward improving the practicality of C-RBDO.  Although C-RBDO requires 

many reliability analyses at a design, the analyses can share one surrogate model.  

Therefore, it would not require several surrogate models at a design.  Finally, the 

consistency of design sensitivity for C-RBDO could be improved.  As the design 

sensitivity uses MCS method, the sensitivity depends on how MCS samples are 

distributed (locations of samples), especially when a small number of samples is used.  

Hence, the design sensitivity method could be further investigated to provide consistent 

sensitivity even with small number of MCS samples. 
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